Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Type of study
Language
Publication year range
1.
Poult Sci ; 87(7): 1458-63, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18577630

ABSTRACT

A study was conducted to determine the effects of treating and reusing poultry chiller water in a commercial poultry processing facility. Broiler carcasses and chiller water were obtained from a commercial processing facility which had recently installed a TOMCO Pathogen Management System to recycle water in sections 2 and 3 of two 3-compartment chillers. In this system, reused water is blended with fresh water to maintain the chiller volume. Carcasses were sampled prechill and postchill (final exit), and chiller water was sampled from the beginning and end of each of the 3 sections. Carcasses were subjected to a whole carcass rinse (WCR) in 0.1% peptone. Numbers of Escherichia coli (EC), coliforms (CF), and Campylobacter (CPY) were determined from the WCR and chiller water samples. Prevalence of Salmonella (SAL) was also determined on the WCR and chiller water samples. On average, prechill levels of bacteria recovered from rinses were 2.6, 2.9, and 2.6 log10 cfu/mL for EC, CF, and CPY, respectively. Ten out of 40 (25%) prechill carcasses were positive for SAL. After chilling, numbers of EC, CF, and CPY recovered from carcass rinses decreased by 1.5, 1.5, and 2.0 log10 cfu/mL, respectively. However, 9 out of 40 (22%) postchill carcasses were positive for SAL. When the chiller water samples were tested, counts of EC, CF, and CPY were found only in water collected from the first section of the chiller (inlet and outlet). Two of 4 water samples collected from the inlet of the first section tested positive for SAL. This study shows that fresh and reused water can be used to cool poultry in chiller systems to achieve a reduction in numbers of bacteria (EC, CF, and CPY) or equivalent prevalence (SAL) of bacteria recovered from broiler carcasses.


Subject(s)
Chickens/microbiology , Food Handling/methods , Water/chemistry , Animals , Chlorine , Cold Temperature , Food Contamination/prevention & control , Food Handling/instrumentation , Food Handling/standards , Food Microbiology , Water Microbiology
2.
J Food Prot ; 70(8): 1829-34, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17803138

ABSTRACT

A study was conducted to investigate the effect of chilling method (air or immersion) on concentration and prevalence of Escherichia coli, coliforms, Campylobacter, and Salmonella recovered from broiler chicken carcasses. For each of four replications, 60 broilers were inoculated orally and intracloacally with 1 ml of a suspension containing Campylobacter at approximately 10(8) cells per ml. After 1 day, broilers were inoculated with 1 ml of a suspension containing Salmonella at approximately 10(8) cells per ml. Broilers were processed, and carcasses were cooled with dry air (3.5 m/s at -1.1 degrees C for 150 min) or by immersion chilling in ice water (0.6 degrees C for 50 min). Concentrations of E. coli, coliforms, Campylobacter, and Salmonella recovered from prechill carcasses averaged 3.5, 3.7, 3.4, and 1.4 log CFU/ml of rinse, respectively. Overall, both chilling methods significantly reduced bacterial concentrations on the carcasses, and no difference in concentrations of bacteria was observed between the two chilling methods (P < 0.05). Both chilling methods reduced E. coli and coliforms by 0.9 to 1.0 log CFU/ml. Air and immersion chilling reduced Campylobacter by 1.4 and 1.0 log CFU/ml and reduced Salmonella by 1.0 and 0.6 log CFU/ml, respectively. Chilling method had no effect on the prevalence of Campylobacter and Salmonella recovered from carcasses. These results demonstrate that air- and immersion-chilled carcasses without chemical intervention are microbiologically comparable, and a 90% reduction in concentrations of E. coli, coliforms, and Campylobacter can be obtained by chilling.


Subject(s)
Chickens/microbiology , Cold Temperature , Food Contamination/analysis , Food Handling/methods , Immersion , Animals , Campylobacter/growth & development , Colony Count, Microbial , Consumer Product Safety , Enterobacteriaceae/growth & development , Escherichia coli/growth & development , Humans , Meat/microbiology , Salmonella/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL