Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Biol Chem ; : 107796, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39305958

ABSTRACT

Insulin Receptor Substrate 2 (IRS2) is a signaling adaptor protein for the insulin (IR) and Insulin-like Growth Factor-1 (IGF-1R) receptors. In breast cancer, IRS2 contributes to both initiation of primary tumor growth and establishment of secondary metastases through regulation of cancer stem cell (CSC) function and invasion. However, how IRS2 mediates its diverse functions is not well understood. We used CRISPR/Cas9-mediated gene editing to modify endogenous IRS2 to study the expression, localization, and function of this adaptor protein. A cassette containing an auxin inducible degradation (AID) sequence, 3X-FLAG tag and mNeon-green was introduced at the N-terminus of the IRS2 gene to provide rapid and reversible control of IRS2 protein degradation and analysis of endogenous IRS2 expression and localization. Live fluorescence imaging of these cells revealed that IRS2 shuttles between the cytoplasm and nucleus in response to growth regulatory signals in a PI3K-dependent manner. Inhibition of nuclear export or deletion of a putative nuclear export sequence in the C-terminal tail promotes nuclear retention of IRS2, implicating nuclear export in the mechanism by which IRS2 intracellular localization is regulated. Moreover, the acute induction of IRS2 degradation reduces tumor cell invasion, demonstrating the potential for therapeutic targeting of this adaptor protein. Our data highlight the value of our model of endogenously tagged IRS2 as a tool to study IRS2 localization and function.

2.
Cell Rep ; 41(10): 111759, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476848

ABSTRACT

Despite the strong association of the insulin/insulin-like growth factor (IGF) signaling (IIS) pathway with tumor initiation, recurrence, and metastasis, the mechanism by which this pathway regulates cancer progression is not well understood. Here, we report that IIS supports breast cancer stem cell (CSC) self-renewal in an IRS2-phosphatidylinositol 3-kinase (PI3K)-dependent manner that involves the activation and stabilization of MYC. IRS2-PI3K signaling enhances MYC expression through the inhibition of GSK3ß activity and suppression of MYC phosphorylation on threonine 58, thus reducing proteasome-mediated degradation of MYC and sustaining active pS62-MYC function. A stable T58A-Myc mutant rescues CSC function in Irs2-/- cells, supporting the role of this MYC stabilization in IRS2-dependent CSC regulation. These findings establish a mechanistic connection between the IIS pathway and MYC and highlight a role for IRS2-dependent signaling in breast cancer progression.


Subject(s)
Neoplasms , Somatomedins , Insulin , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases , Neoplastic Stem Cells , Signal Transduction
3.
Mol Cell Endocrinol ; 527: 111213, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33607269

ABSTRACT

This review highlights the significance of the insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway in cancer and assesses its potential as a therapeutic target. Our emphasis is on breast cancer, but this pathway is central to the behavior of many cancers. An understanding of how IR/IGF-1R signaling contributes to the function of the normal mammary gland provides a foundation for understanding its aberrations in breast cancer. Specifically, dysregulation of the expression and function of ligands (insulin, IGF-1 and IGF-2), receptors and their downstream signaling effectors drive breast cancer initiation and progression, often in a subtype-dependent manner. Efforts to target this pathway for the treatment of cancer have been hindered by several factors including a lack of biomarkers to select patients that could respond to targeted therapy and adverse effects on normal metabolism. To this end, we discuss ongoing efforts aimed at overcoming such obstacles.


Subject(s)
Breast Neoplasms/metabolism , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Neoplasm Proteins/metabolism , Signal Transduction , Antigens, CD/genetics , Antigens, CD/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/genetics , Neoplasm Proteins/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL