Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Curr Opin Immunol ; : 102431, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866666

ABSTRACT

Immune cells in the tumor microenvironment play a crucial role in cancer prognosis and response to immunotherapy. Recent studies highlight the significance of tumor-infiltrating B cells and tertiary lymphoid structures as markers of favorable prognosis and patient-positive response to immune checkpoint blockers in some types of cancer. Although the presence of germinal center B cells and plasma cells in the tumor microenvironment has been established, determining their tumor reactivity remains challenging. The few known tumor targets range from viral proteins to self and altered self-proteins. The emergence of self-reactive antibodies in patients with cancer, involves the opposing forces of antigen-driven affinity increase and peripheral tolerance mechanisms. Here, B cell tumor antigen specificity and affinity maturation in tumor-directed immune responses in cancer are discussed.

2.
Sci Immunol ; 9(93): eadj7124, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552029

ABSTRACT

Antibody affinity maturation occurs in secondary lymphoid organs within germinal centers (GCs). At these sites, B cells mutate their antibody-encoding genes in the dark zone, followed by preferential selection of the high-affinity variants in the light zone by T cells. The strength of the T cell-derived selection signals is proportional to the B cell receptor affinity and to the magnitude of subsequent Myc expression. However, because the lifetime of Myc mRNA and its corresponding protein is very short, it remains unclear how T cells induce sustained Myc levels in positively selected B cells. Here, by direct visualization of mRNA and active transcription sites in situ, we found that an increase in transcriptional bursts promotes Myc expression during B cell positive selection in GCs. Elevated T cell help signals predominantly enhance the percentage of cells expressing Myc in GCs as opposed to augmenting the quantity of Myc transcripts per individual cell. Visualization of transcription start sites in situ revealed that T cell help promotes an increase in the frequency of transcriptional bursts at the Myc locus in GC B cells located primarily in the LZ apical rim. Thus, the rise in Myc, which governs positive selection of B cells in GCs, reflects an integration of transcriptional activity over time rather than an accumulation of transcripts at a specific time point.


Subject(s)
B-Lymphocytes , T-Lymphocytes , Germinal Center , Receptors, Antigen, B-Cell/metabolism , RNA, Messenger/metabolism
3.
Nat Metab ; 5(11): 1858-1869, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857731

ABSTRACT

The intestinal epithelium is replaced every few days1. Enterocytes are shed into the gut lumen predominantly from the tips of villi2,3 and have been believed to rapidly die upon their dissociation from the tissue4,5. However, technical limitations prohibited studying the cellular states and fates of shed intestinal cells. Here we show that shed epithelial cells remain viable and upregulate distinct anti-microbial programmes upon shedding, using bulk and single-cell RNA sequencing of male mouse intestinal faecal washes. We further identify abundant shedding of immune cells, which is elevated in mice with dextran sulfate sodium-induced colitis. We find that faecal host transcriptomics reflect changes in the intestinal tissue following perturbations. Our study suggests potential functions of shed cells in the intestinal lumen and demonstrates that host cell transcriptomes in intestinal washes can be used to probe tissue states.


Subject(s)
Colitis , Male , Mice , Animals , Colitis/chemically induced , Intestinal Mucosa , Epithelial Cells
4.
Cancer Discov ; 13(12): 2610-2631, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37756565

ABSTRACT

Cancer mortality primarily stems from metastatic recurrence, emphasizing the urgent need for developing effective metastasis-targeted immunotherapies. To better understand the cellular and molecular events shaping metastatic niches, we used a spontaneous breast cancer lung metastasis model to create a single-cell atlas spanning different metastatic stages and regions. We found that premetastatic lungs are infiltrated by inflammatory neutrophils and monocytes, followed by the accumulation of suppressive macrophages with the emergence of metastases. Spatial profiling revealed that metastasis-associated immune cells were present in the metastasis core, with the exception of TREM2+ regulatory macrophages uniquely enriched at the metastatic invasive margin, consistent across both murine models and human patient samples. These regulatory macrophages (Mreg) contribute to the formation of an immune-suppressive niche, cloaking tumor cells from immune surveillance. Our study provides a compendium of immune cell dynamics across metastatic stages and niches, informing the development of metastasis-targeting immunotherapies. SIGNIFICANCE: Temporal and spatial single-cell analysis of metastasis stages revealed new players in modulating immune surveillance and suppression. Our study highlights distinct populations of TREM2 macrophages as modulators of the microenvironment in metastasis, and as the key immune determinant defining metastatic niches, pointing to myeloid checkpoints to improve therapeutic strategies. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Mice , Humans , Animals , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Lung Neoplasms/pathology , Lung/pathology , Macrophages , Tumor Microenvironment , Neoplasm Metastasis/pathology , Membrane Glycoproteins , Receptors, Immunologic
5.
Brain Behav Immun ; 113: 66-82, 2023 10.
Article in English | MEDLINE | ID: mdl-37369341

ABSTRACT

Stress-induced ß2-adrenergic receptor (ß2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological ß2AR blocking or when the experiments were conducted in ß2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following ß2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo ß2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, ß2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a ß2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated ß2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.


Subject(s)
Adrenergic Agents , COVID-19 , Mice , Animals , Phosphatidylinositol 3-Kinases , SARS-CoV-2/metabolism , Receptors, Adrenergic, beta-2/metabolism , Immunoglobulin G
6.
J Exp Clin Cancer Res ; 42(1): 107, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37121997

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is known for exhibiting low response rates to immune checkpoint inhibitors that activate T cells. However, immunotherapies that activate B cells have not yet been extensively explored and may be a potential target, as B cells that secrete immunoglobulins have been associated with better outcomes in OC. Although the secretion of immunoglobulins is often mediated by the microbiome, it is still unclear what role they play in limiting the progression of OC. METHODS: We conducted an in-vivo CRISPR screen of immunodeficient (NSG) and immune-intact wild type (WT) C57/BL6 mice to identify tumor-derived immune-escape mechanisms in a BRAC1- and TP53-deficient murine ID8 OC cell line (designated ITB1). To confirm gene expression and signaling pathway activation in ITB1 cells, we employed western blot, qPCR, immunofluorescent staining, and flow cytometry. Flow cytometry was also used to identify immune cell populations in the peritoneum of ITB1-bearing mice. To determine the presence of IgA-coated bacteria in the peritoneum of ITB1-bearing mice and the ascites of OC patients, we employed 16S sequencing. Testing for differences was done by using Deseq2 test and two-way ANOVA test. Sequence variants (ASVs) were produced in Qiime2 and analyzed by microeco and phyloseq R packages. RESULTS: We identified tumor necrosis factor receptor-associated factor 3 (TRAF3) as a tumor-derived immune suppressive mediator in ITB1 cells. Knockout of TRAF3 (TRAF3KO) activated the type-I interferon pathway and increased MHC-I expression. TRAF3KO tumors exhibited a growth delay in WT mice vs. NSG mice, which was correlated with increased B cell infiltration and activation compared to ITB1 tumors. B cells were found to be involved in the progression of TRAF3KO tumors, and B-cell surface-bound and secreted IgA levels were significantly higher in the ascites of TRAF3KO tumors compared to ITB1. The presence of commensal microbiota was necessary for B-cell activation and for delaying the progression of TRAF3KO tumors in WT mice. Lastly, we observed unique profiles of IgA-coated bacteria in the ascites of OC-bearing mice or the ascites of OC patients. CONCLUSIONS: TRAF3 is a tumor-derived immune-suppressive modulator that influences B-cell infiltration and activation, making it a potential target for enhancing anti-tumor B-cell responses in OC.


Subject(s)
Ovarian Neoplasms , TNF Receptor-Associated Factor 3 , Humans , Female , Mice , Animals , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Ascites , Mice, Knockout , Ovarian Neoplasms/pathology , Immunoglobulin A/metabolism , Cell Line, Tumor
7.
Eur J Immunol ; 53(5): e2350413, 2023 05.
Article in English | MEDLINE | ID: mdl-36898761

ABSTRACT

Reexposure to a pathogen triggers the activation of memory T cells that have already encountered a similar microbe. These long-lived CD4 T cells either circulate through the blood and tissues or reside within organs and are referred to as tissue-resident T cells (CD4 TRM ). In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2023. 53: 2250247] issue, Curham et al. found that tissue-resident memory CD4 T cells in the lung and nasal tissues can respond to noncognate immune challenges. CD4 TRM cells, which were formed in response to Bordetella pertussis, proliferated and produced IL-17A in response to a secondary challenge with heat-killed Klebsiella pneumonia or lipopolysaccharide (LPS). This bystander response depends on the presence of dendritic cells that provide inflammatory cytokines. Furthermore, post K. pneumonia, intranasal immunization with whole cell pertussis vaccine reduced bacterial burden in the nasal tissue in a CD4 T-cell-dependent manner. The study indicates that the noncognate activation of TRM may serve as an innate-like immune response that rapidly develops before establishing a new pathogen-specific adaptive immune response.


Subject(s)
CD4-Positive T-Lymphocytes , Memory T Cells , Humans , Friends , Bordetella pertussis , Pertussis Vaccine , Immunologic Memory
8.
Nat Commun ; 14(1): 1462, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927854

ABSTRACT

Protection from viral infections depends on immunoglobulin isotype switching, which endows antibodies with effector functions. Here, we find that the protein kinase DYRK1A is essential for B cell-mediated protection from viral infection and effective vaccination through regulation of class switch recombination (CSR). Dyrk1a-deficient B cells are impaired in CSR activity in vivo and in vitro. Phosphoproteomic screens and kinase-activity assays identify MSH6, a DNA mismatch repair protein, as a direct substrate for DYRK1A, and deletion of a single phosphorylation site impaired CSR. After CSR and germinal center (GC) seeding, DYRK1A is required for attenuation of B cell proliferation. These findings demonstrate DYRK1A-mediated biological mechanisms of B cell immune responses that may be used for therapeutic manipulation in antibody-mediated autoimmunity.


Subject(s)
B-Lymphocytes , Immunoglobulin Class Switching , Phosphorylation , Immunoglobulin Class Switching/genetics , Germinal Center , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
9.
J Am Chem Soc ; 145(6): 3346-3360, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36738297

ABSTRACT

Electrophiles for covalent inhibitors that are suitable for in vivo administration are rare. While acrylamides are prevalent in FDA-approved covalent drugs, chloroacetamides are considered too reactive for such purposes. We report sulfamate-based electrophiles that maintain chloroacetamide-like geometry with tunable reactivity. In the context of the BTK inhibitor ibrutinib, sulfamate analogues showed low reactivity with comparable potency in protein labeling, in vitro, and cellular kinase activity assays and were effective in a mouse model of CLL. In a second example, we converted a chloroacetamide Pin1 inhibitor to a potent and selective sulfamate acetamide with improved buffer stability. Finally, we show that sulfamate acetamides can be used for covalent ligand-directed release (CoLDR) chemistry, both for the generation of "turn-on" probes as well as for traceless ligand-directed site-specific labeling of proteins. Taken together, this chemistry represents a promising addition to the list of electrophiles suitable for in vivo covalent targeting.


Subject(s)
Acetamides , Protein Kinase Inhibitors , Mice , Animals , Ligands , Protein Kinase Inhibitors/pharmacology
10.
J Exp Med ; 220(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36705667

ABSTRACT

Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown. Here, we demonstrate that TBMs originate from pre-existing lymph node-resident precursors that enter the lymph node follicles in a GC-dependent manner. Intravital imaging shows that TBMs are stationary cells that selectively phagocytose GC B cells via highly dynamic protrusions and accommodate the final stages of B cell apoptosis. Cell-specific depletion and chimeric mouse models revealed that GC B cells drive TBM formation from bone marrow-derived precursors stationed within lymphoid organs prior to the immune challenge. Understanding TBM dynamics and function may explain the emergence of various antibody-mediated autoimmune conditions.


Subject(s)
Lymph Nodes , Macrophages , Mice , Animals , Lymph Nodes/pathology , Germinal Center , B-Lymphocytes , Dendrites
11.
Immunity ; 55(11): 1972-1974, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351370

ABSTRACT

Protecting the upper airways and brain from viral invasion through the olfactory mucosa is critical. Wellford et al. describe a barrier that restricts the passage of circulating antibodies and prevents them from reaching the olfactory mucosa. Instead, plasma cells are recruited into this site and prevent viral infection of the airways and the brain through local antibody production.


Subject(s)
Plasma Cells , Respiratory System , Brain
12.
iScience ; 25(10): 105193, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36188189

ABSTRACT

Blocking the interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with its angiotensin-converting enzyme 2 (ACE2) receptor was proved to be an effective therapeutic option. Various protein binders as well as monoclonal antibodies that effectively target the receptor-binding domain (RBD) of SARS-CoV-2 to prevent interaction with ACE2 were developed. The emergence of SARS-CoV-2 variants that accumulate alterations in the RBD can severely affect the efficacy of such immunotherapeutic agents, as is indeed the case with Omicron that resists many of the previously isolated monoclonal antibodies. Here, we evaluate an ACE2-based immunoadhesin that we have developed early in the pandemic against some of the recent variants of concern (VoCs), including the Delta and the Omicron variants. We show that our ACE2-immunoadhesin remains effective in neutralizing these variants, suggesting that immunoadhesin-based immunotherapy is less prone to escape by the virus and has a potential to remain effective against future VoCs.

13.
Nat Immunol ; 23(7): 1098-1108, 2022 07.
Article in English | MEDLINE | ID: mdl-35761088

ABSTRACT

Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity in patients with APS-1 are well established, the underlying cause of the increased susceptibility to Candida albicans infection remains less understood. Here, we show that Aire+MHCII+ type 3 innate lymphoid cells (ILC3s) could sense, internalize and present C. albicans and had a critical role in the induction of Candida-specific T helper 17 (TH17) cell clones. Extrathymic Rorc-Cre-mediated deletion of Aire resulted in impaired generation of Candida-specific TH17 cells and subsequent overgrowth of C. albicans in the mucosal tissues. Collectively, our observations identify a previously unrecognized regulatory mechanism for effective defense responses against fungal infections.


Subject(s)
Autoimmune Diseases , Candidiasis , Polyendocrinopathies, Autoimmune , Candida albicans , Candidiasis/genetics , Humans , Immunity, Innate , Polyendocrinopathies, Autoimmune/genetics , Th17 Cells
14.
Cell Rep ; 39(5): 110778, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35508130

ABSTRACT

Antibody-mediated immunity is initiated by B cell differentiation into multiple cell subsets, including plasmablast, memory, and germinal center (GC) cells. B cell differentiation trajectories are determined by transcription factors, yet very few mechanisms that specifically determine early B cell fates have been described. Here, we report a post-transcriptional mechanism that suppresses the plasmablast genetic program and promotes GC B cell fate commitment. Single-cell RNA-sequencing analysis reveals that antigen-specific B cell precursors at the pre-GC stage upregulate YTHDF2, which enhances the decay of methylated transcripts. Ythdf2-deficient B cells exhibit intact proliferation and activation, whereas differentiation into GC B cells is blocked. Mechanistically, B cells require YTHDF2 to attenuate the plasmablast genetic program during GC seeding, and transcripts of key plasmablast-regulating genes are methylated and bound by YTHDF2. Collectively, this study reveals how post-transcriptional suppression of gene expression directs appropriate B cell fate commitment during initiation of the adaptive immune response.


Subject(s)
Germinal Center , Plasma Cells , B-Lymphocytes , Lymphocyte Activation , Transcription Factors/metabolism
15.
Sci Rep ; 12(1): 5758, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388061

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. More than 274 million individuals have suffered from COVID-19 and over five million people have died from this disease so far. Therefore, there is an urgent need for therapeutic drugs. Repurposing FDA approved drugs should be favored since evaluation of safety and efficacy of de-novo drug design are both costly and time consuming. We report that imatinib, an Abl tyrosine kinase inhibitor, robustly decreases SARS-CoV-2 infection and uncover a mechanism of action. We show that imatinib inhibits the infection of SARS-CoV-2 and its surrogate lentivector pseudotype. In latter, imatinib inhibited both routes of viral entry, endocytosis and membrane-fusion. We utilized a system to quantify in real-time cell-cell membrane fusion mediated by the SARS-CoV-2 surface protein, Spike, and its receptor, hACE2, to demonstrate that imatinib inhibits this process in an Abl1 and Abl2 independent manner. Furthermore, cellular thermal shift assay revealed a direct imatinib-Spike interaction that affects Spike susceptibility to trypsin digest. Collectively, our data suggest that imatinib inhibits Spike mediated viral entry by an off-target mechanism. These findings mark imatinib as a promising therapeutic drug in inhibiting the early steps of SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Humans , Imatinib Mesylate/pharmacology , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
16.
Cell ; 185(7): 1208-1222.e21, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35305314

ABSTRACT

The tumor microenvironment hosts antibody-secreting cells (ASCs) associated with a favorable prognosis in several types of cancer. Patient-derived antibodies have diagnostic and therapeutic potential; yet, it remains unclear how antibodies gain autoreactivity and target tumors. Here, we found that somatic hypermutations (SHMs) promote antibody antitumor reactivity against surface autoantigens in high-grade serous ovarian carcinoma (HGSOC). Patient-derived tumor cells were frequently coated with IgGs. Intratumoral ASCs in HGSOC were both mutated and clonally expanded and produced tumor-reactive antibodies that targeted MMP14, which is abundantly expressed on the tumor cell surface. The reversion of monoclonal antibodies to their germline configuration revealed two types of classes: one dependent on SHMs for tumor binding and a second with germline-encoded autoreactivity. Thus, tumor-reactive autoantibodies are either naturally occurring or evolve through an antigen-driven selection process. These findings highlight the origin and potential applicability of autoantibodies directed at surface antigens for tumor targeting in cancer patients.


Subject(s)
Antibodies, Neoplasm , Ovarian Neoplasms , Antibodies, Monoclonal , Autoantibodies , Autoantigens , Female , Humans , Ovarian Neoplasms/genetics , Tumor Microenvironment
17.
Immunity ; 55(3): 442-458.e8, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35182483

ABSTRACT

Consecutive exposures to different pathogens are highly prevalent and often alter the host immune response. However, it remains unknown how a secondary bacterial infection affects an ongoing adaptive immune response elicited against primary invading pathogens. We demonstrated that recruitment of Sca-1+ monocytes into lymphoid organs during Salmonella Typhimurium (STm) infection disrupted pre-existing germinal center (GC) reactions. GC responses induced by influenza, plasmodium, or commensals deteriorated following STm infection. GC disruption was independent of the direct bacterial interactions with B cells and instead was induced through recruitment of CCR2-dependent Sca-1+ monocytes into the lymphoid organs. GC collapse was associated with impaired cellular respiration and was dependent on TNFα and IFNγ, the latter of which was essential for Sca-1+ monocyte differentiation. Monocyte recruitment and GC disruption also occurred during LPS-supplemented vaccination and Listeria monocytogenes infection. Thus, systemic activation of the innate immune response upon severe bacterial infection is induced at the expense of antibody-mediated immunity.


Subject(s)
Bacterial Infections , Listeriosis , B-Lymphocytes , Germinal Center , Humans , Monocytes
18.
Curr Opin Immunol ; 74: 100-105, 2022 02.
Article in English | MEDLINE | ID: mdl-34847473

ABSTRACT

Effective long-lasting immunity depends on the generation of protective antibodies that restrict the invasion of harmful pathogens. The germinal center (GC) is a microanatomical site at which B cells acquire random somatic mutations in their immunoglobulin genes followed by affinity-based selection. Whereas this process was extensively studied in lymph nodes and spleen, less is known about GCs located in mucosal tissues lymphoid organs, such as the Peyer's patches (PPs). These lymphoid organs have a special structure and host a unique niche known as the subepithelial dome (SED), where B cell activation and class switch recombination to IgA take place before GC seeding. As opposed to typical lymph-nodes, the PPs host chronic GC reactions that are driven by gut-bacteria. Direct evidence for antibody affinity maturation in PPs, and competition between B cells for T cell help was recently obtained. Here, we discuss these findings and how they complement each other.


Subject(s)
Germinal Center , Peyer's Patches , B-Lymphocytes , Humans , Immunoglobulin A , Lymph Nodes , Lymphocyte Activation
19.
Methods Mol Biol ; 2380: 3-13, 2022.
Article in English | MEDLINE | ID: mdl-34802117

ABSTRACT

Long-lasting immunity depends on generation of antibody forming cells in germinal centers (GCs). Conventional methods such as immunohistology and intravital live imaging have been used extensively to investigate the location of cellular assemblies within tissues as well as their dynamic motility and cellular interactions. Two photon laser scanning microscopy (TPLSM) intravital imaging allows scanning of large areas within tissues and reveals multiple immune cell niches. Nonetheless, this type of imaging is limited by the depth of penetration and cannot capture effectively all of the GC niches within lymphoid organs. Here we describe a method to visualize antigen-specific T and B cells in multiple microanatomical locations and niches at the level of a whole organ. This large-scale imaging approach can greatly increase our understanding of the spatial distribution of immune cells and help obtain detailed 3D maps of their locations and quantities.


Subject(s)
T Follicular Helper Cells , B-Lymphocytes , Germinal Center , Microscopy, Fluorescence , T-Lymphocytes, Helper-Inducer
20.
J Am Chem Soc ; 143(48): 20095-20108, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34817989

ABSTRACT

Chemical modifications of native proteins can affect their stability, activity, interactions, localization, and more. However, there are few nongenetic methods for the installation of chemical modifications at a specific protein site in cells. Here we report a covalent ligand directed release (CoLDR) site-specific labeling strategy, which enables the installation of a variety of functional tags on a target protein while releasing the directing ligand. Using this approach, we were able to label various proteins such as BTK, K-RasG12C, and SARS-CoV-2 PLpro with different tags. For BTK we have shown selective labeling in cells of both alkyne and fluorophores tags. Protein labeling by traditional affinity methods often inhibits protein activity since the directing ligand permanently occupies the target binding pocket. We have shown that using CoLDR chemistry, modification of BTK by these probes in cells preserves its activity. We demonstrated several applications for this approach including determining the half-life of BTK in its native environment with minimal perturbation, as well as quantification of BTK degradation by a noncovalent proteolysis targeting chimera (PROTAC) by in-gel fluorescence. Using an environment-sensitive "turn-on" fluorescent probe, we were able to monitor ligand binding to the active site of BTK. Finally, we have demonstrated efficient CoLDR-based BTK PROTACs (DC50 < 100 nM), which installed a CRBN binder onto BTK. This approach joins very few available labeling strategies that maintain the target protein activity and thus makes an important addition to the toolbox of chemical biology.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/chemistry , Fluorescent Dyes/chemistry , Ligands , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/metabolism , Agammaglobulinaemia Tyrosine Kinase/metabolism , Catalytic Domain , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Half-Life , Humans , Piperidines/chemistry , Piperidines/metabolism , Proteolysis , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrimidines/chemistry , Pyrimidines/metabolism , SARS-CoV-2/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL