Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters








Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131104, 2024 May.
Article in English | MEDLINE | ID: mdl-38522703

ABSTRACT

The growing relevance of sustainable materials has recently led to the exploration of naturally derived biopolymeric hydrogels as coating materials due to their biodegradability, biocompatibility, ease of fabrication and modification. Although many review articles exist on biopolymeric coatings, they mainly focus on a specific polysaccharide, protein biopolymer, or a particular application- biomedical engineering or food preservation. The current review first summarizes the commonly used polysaccharide and protein-based biopolymers like chitosan, alginate, carrageenan, pectin, cellulose, starch, pullulan, agarose and silk fibroin, gelatin, respectively, with a systematic description of the techniques widely used for physical coating on substrates. Then, broad applications of these biopolymeric coatings on various substrates in biomedical engineering- 3D scaffolds, biomedical implants, and nanoparticles are described in detail. It also entails the application of biopolymeric coatings for food preservation in the form of food packaging and edible coatings. A brief discussion on the newly discovered interest in exploring biopolymers for anticorrosive coating applications is also included. Finally, concluding remarks on the role of biopolymer microstructures in forming homogeneous coatings, prospective alternatives to the currently used biopolymers as coating material and the advent of computer-aided technologies to expedite experimental findings are presented.


Subject(s)
Coated Materials, Biocompatible , Polysaccharides , Polysaccharides/chemistry , Biopolymers/chemistry , Coated Materials, Biocompatible/chemistry , Proteins/chemistry , Hydrogels/chemistry , Humans , Animals
2.
J Acoust Soc Am ; 155(3): 2025-2036, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38470185

ABSTRACT

Quantitative, accurate, and standardized metrics are important for reliable shear wave elastography (SWE)-based biomarkers. For over two decades, the linear-elastic material assumption has been employed in SWE modes. In recent years, viscoelasticity estimation methods have been adopted in a few clinical systems. The current study aims to systematically quantify differences in SWE estimates obtained using linear-elastic and viscoelastic material assumptions. An acousto-mechanical simulation framework of acoustic radiation force impulse-based SWE was created to elucidate the effect of material viscosity and shear modulus on SWE estimates. Shear modulus estimates exhibited errors up to 72% when a numerical viscoelastic phantom was assessed as linearly elastic. Shear modulus estimates of polyvinyl alcohol phantoms between rheometry and SWE following the Kelvin-Voigt viscoelastic model assumptions were not significantly different. However, the percentage difference in shear modulus estimates between rheometry and SWE using the linear-elastic assumption was 50.1%-62.1%. In ex vivo liver, the percentage difference in shear modulus estimates between linear-elastic and viscoelastic methods was 76.1%. These findings provide a direct and systematic quantification of the potential error introduced when viscoelastic tissues are imaged with SWE following the linear-elastic assumption. This work emphasizes the need to utilize viscoelasticity estimation methods for developing robust quantitative imaging biomarkers.


Subject(s)
Elasticity Imaging Techniques , Computer Simulation , Liver , Phantoms, Imaging , Biomarkers
3.
Pharm Dev Technol ; 28(3-4): 299-308, 2023.
Article in English | MEDLINE | ID: mdl-36940227

ABSTRACT

A newly developed iron-based nano-biocomposite (nano Fe-CNB) impregnated alginate formulation (CA) is proposed to improve drug loading and exhibit pH-responsive behavior of model anti-inflammatory drug-ibuprofen for controlled release applications. The proposed formulation is investigated with conventional ß-CD addition in CA. The nano Fe-CNB-based formulations with and without ß-CD, (Fe-CNB ß-CD CA and Fe-CNB CA) are compared with only CA and ß-CD incorporated CA formulations. The results indicate the incorporation of nano-biocomposite or ß-CD into CA enhances the drug loading (>40%). However, pH-responsive controlled release behavior is observed for nano Fe-CNB based formulations only. The release studies from Fe-CNB ß-CD CA indicate ∼ 45% release in stomach pH (1.2) within 2 h. In contrast, Fe-CNB CA shows ∼20% release only in stomach pH and improved release (∼49%) at colon pH (7.4). The rheology and swelling studies indicate Fe-CNB CA remains intact in stomach pH with a minimal drug release, but it disintegrates at colon pH due to charge reversal behavior of nano-biocomposite and ionization of polymeric chains. Thus, Fe-CNB CA formulation is found to be a potential candidate for targeting colon delivery, inflammatory bowel disease, and post-operative conditions.


Subject(s)
Anti-Inflammatory Agents , Hydrogels , Delayed-Action Preparations , Drug Carriers , Drug Liberation , Hydrogen-Ion Concentration
4.
ACS Appl Bio Mater ; 6(2): 578-590, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36655342

ABSTRACT

Chitosan (CH)-based hydrogels have been extensively researched in numerous biological applications, including drug delivery, biosensing, wound healing, and tissue engineering, to name a few. Previously, modified CH hydrogels by carbamoylation, using potassium cyanate (KCNO) as the cross-linker, have shown improvement in viscoelastic properties and biocompatibility. In this study, graphene oxide (GO) nanofillers are added to carbamoylated CH to form a nanocomposite hydrogel and study the influence of CH molecular weight (Mw) and GO loading concentrations on hydrogel properties. The physical properties (swelling, degradation, and porous structure) of the hydrogels can be tuned as required for cell attachment and spreading by varying both the GO concentration and the Mw of CH. Rheological characterization showed an improvement in the mechanical properties (storage modulus, yield stress, and viscosity) of the synthesized CH-GO hydrogels with an increase in the Mw of CH and the GO concentration. Human retinal pigmented epithelial-1 (RPE-1) cells seeded onto the prepared hydrogel scaffolds showed good cell viability, adhesion, and cell spreading, confirming their cytocompatibility, with dependence on both Mw of CH and GO loading.


Subject(s)
Chitosan , Graphite , Humans , Chitosan/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Engineering , Graphite/pharmacology , Graphite/chemistry
5.
Ultrasound Med Biol ; 49(2): 497-511, 2023 02.
Article in English | MEDLINE | ID: mdl-36328889

ABSTRACT

Ultrasound phantoms mimic the acoustic and mechanical properties of native tissues. Polyvinyl alcohol (PVA) phantoms are used extensively as models for validating ultrasound elastography approaches. However, the viscous properties of PVA phantoms have not been investigated adequately. Glycerol is a viscous liquid that has been reported to increase the speed of sound of phantoms. This study aims to assess the acoustic and viscoelastic properties of PVA phantoms and PVA mixed with glycerol at varying concentrations. The phantoms were fabricated with 10% w/v PVA in water with varying concentrations of glycerol (10%, 15% and 20% v/v) and 2% w/v silicon carbide particles as acoustic scatterers. The phantoms were subjected to either one, two, or three 24-h freeze-thaw cycles. The longitudinal sound speeds of all PVA phantoms were measured, and ranged from 1529 to 1660 m/s. Attenuation spectroscopy was performed in the range of 5 to 20 MHz. The measured attenuation followed a power-law relationship with frequency, wherein the power-law fit constants and exponents ranged from 0.02 to 0.1 dB/cm/MHzn and from 1.6 to 1.9, respectively. These results were in agreement with previous reports for soft tissues. Viscoelasticity of PVA phantoms was assessed using rheometry. The estimated values of shear modulus and viscosity using the Kelvin-Voigt and Kelvin-Voigt fractional derivative models were within the range of previously-reported tissue-mimicking phantoms and soft tissues. The number of freeze-thaw cycles were shown to alter the viscosity of PVA phantoms, even in the absence of glycerol. Scanning electron microscopy images of PVA phantoms without glycerol showed a porous hydrogel network, in contrast to those of PVA-glycerol phantoms with non-porous structure. Phantoms fabricated in this study possess tunable acoustic and viscoelastic properties within the range reported for healthy and diseased soft tissues. This study demonstrates that PVA phantoms can be manufactured with glycerol for applications in ultrasound elastography.


Subject(s)
Elasticity Imaging Techniques , Elasticity Imaging Techniques/methods , Polyvinyl Alcohol/chemistry , Glycerol , Ultrasonography/methods , Acoustics , Phantoms, Imaging
6.
J Phys Chem B ; 126(40): 8102-8111, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36171735

ABSTRACT

This study exploits higher-order micellar transition ranging from ellipsoidal to rodlike to wormlike induced by 1-octanol (C8OH) in an aqueous solution of cetyltrimethylammonium bromide (CTAB), characterizing phase behavior, rheology, and small-angle neutron scattering (SANS). The phase diagram for the ternary system CTAB-C8OH-water was constructed, which depicted the varied solution behavior. Such performance was further inferred from the rheology study (oscillatory-shear frequency sweep (ω) and viscosity (η)) that displayed an interesting solution behavior of CTAB solutions as a function of C8OH. It was observed that at low C8OH concentrations, the solutions appeared viscous/viscoelastic fluids that changed to an elastic gel with an infinite relaxation time at higher concentrations of C8OH, thereby confirming the existence of distinct micelle morphologies. Small-angle neutron scattering (SANS) provided various micellar parameters such as aggregation numbers (Nagg) and micellar size/shape. The experimental results were further validated with a computational simulation approach. The molecular dynamic (MD) study offered an insight into the molecular interactions and aggregation behavior through different analyses, including radial distribution function (RDF), radius of gyration (Rg), and solvent-accessible surface area (SASA).


Subject(s)
Micelles , Surface-Active Agents , 1-Octanol , Cetrimonium , Solvents , Water
7.
Nanoscale ; 14(24): 8611-8620, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35687044

ABSTRACT

Designing programmable biomaterials that could act as extracellular matrices and permit functionalization is a current need for tissue engineering advancement. DNA based hydrogels are gaining significant attention owing to their self-assembling properties, biocompatibility, chemical robustness and low batch to batch variability. The real potential of DNA hydrogels in the biomedical domain remains to be explored. In this work, a DNA hydrogel was coated on a glass surface and coupled to a synthetic IKVAV peptide by a chemical crosslinker. We observe enhanced neuronal differentiation, prolonged neurite length, dynamic movement of microtubules and cytoskeleton, and altered endocytic mechanisms in neuroblastoma-based stem cells for the peptide modified DNA hydrogel compared to the unmodified DNA hydrogel and controls. We anticipate that a peptide-modified DNA hydrogel could emerge as a promising scaffold coating material to develop nerve tissue conduits in the future for application in neuroscience and neuroregeneration.


Subject(s)
Neural Stem Cells , Neuroblastoma , Cell Differentiation , DNA/metabolism , Humans , Hydrogels/chemistry , Peptides/chemistry
8.
Carbohydr Polym ; 269: 118254, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34294291

ABSTRACT

The direct write printing method has gained popularity in synthesizing scaffolds for tissue engineering. To achieve an excellent printability of scaffolds, a thorough evaluation of rheological properties is required. We report the synthesis, characterization, rheology, and direct-write printing of chitosan - graphene oxide (CH - GO) nanocomposite hydrogels at a varying concentration of GO in 3 and 4 wt% CH polymeric gels. Rheological characterization of CH - GO hydrogels shows that an addition of only 0.5 wt% of GO leads to a substantial increase in storage modulus (G'), viscosity, and yield stress of 3 and 4 wt% of CH hydrogels. A three-interval thixotropy test (3ITT) shows that 3 wt% CH with 0.5 wt% GO hydrogel has 94% recovery of G' after 7 sequential stress cycles and is the best candidate for direct-write printing. Neuronal cell culture on 3 wt% CH with 0.5 wt% hydrogels reveals that GO promotes the differentiation of SH-SY5Y cells.


Subject(s)
Cell Differentiation/drug effects , Chitosan/pharmacology , Graphite/pharmacology , Hydrogels/pharmacology , Nanocomposites/chemistry , Bioprinting , Cell Line, Tumor , Chitosan/chemistry , Graphite/chemistry , Humans , Hydrogels/chemistry , Mechanical Phenomena , Neuroblastoma/metabolism , Printing, Three-Dimensional , Rheology , Viscosity
9.
Langmuir ; 37(15): 4611-4621, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33843215

ABSTRACT

In this work, we characterize the micellization and morphology transition induced in aqueous cetyltrimethylammonium bromide (CTAB) solution by the addition of the antioxidant propyl gallate (PG) using tensiometry, rheology, and small-angle neutron scattering (SANS) techniques combined with the molecular dynamics (MD) simulation approach. The adsorption of CTAB at the air-water interface in the presence of varying [PG] revealed a progressive decrease in the critical micelle concentration (CMC), while the changes in different interfacial parameters indicated enhancement of the hydrophobicity induced by PG in the CTAB micellar system. The dynamic rheology behavior indicated an increase in the flow viscosity (η) as a function of [PG]. Moreover, the rheological components (storage modulus, G', and loss modulus, G″) depicted the viscoelastic features. SANS measurements depicted the existence of ellipsoidal micelles with varying sizes and aggregation number (Nagg) as a function of [PG] and temperature. Computational simulation performed using density functional theory (DFT) calculations and molecular dynamics (MD) provided an insight into the atomic composition of the examined system. The molecular electrostatic potential (MEP) analysis depicted a close proximity of CTAB, i.e., emphasized favorable interactions between the quaternary nitrogen of CTAB and the hydroxyl group of the PG monomer, further validated by the two-dimensional nuclear Overhauser enhancement spectroscopy (2D-NOESY), which showed the penetration of PG inside the CTAB micelles. In addition, various dynamic properties, viz., the radial distribution function (RDF), the radius of gyration (Rg), and solvent-accessible surface area (SASA), showed a significant microstructural evolution of the ellipsoidal micelles in the examined CTAB-PG system, where the changes in the micellar morphology with a more elongated hydrophobic chain and the increased Rg and SASA values indicated the notable intercalation of PG in the CTAB micelles.


Subject(s)
Cetrimonium Compounds , Micelles , Antioxidants , Cations , Cetrimonium , Surface-Active Agents
10.
Biomed Mater ; 16(4)2021 05 07.
Article in English | MEDLINE | ID: mdl-33857925

ABSTRACT

We demonstrate a benign and straightforward method to modify the chitosan (CH) by carbamoylation. The free amines on CH are converted into carbamyl functionalities by reacting with potassium cyanate (KCNO). One wt% CH solution, when reacted with KCNO ⩾ 0.1 M, leads to the sol-gel transition of CH through the hydrogen bonding to form carbamoylated chitosan (CCH) hydrogel. Gelation time of CCH decreases with an increase in the KCNO concentration and an interconnected porous network is formed as observed under SEM. Rheological studies show that while one wt% CH solution is a viscous liquid, the CCH hydrogel with 0.5 M KCNO has a storage modulus (G') of 104Pa. The CCH hydrogel is proved to be non-cytotoxic and promotes the attachment and growth of the small lung cancer model A549, and the neuroblastoma SH-SY5Y cell lines. CCH hydrogel also promotes the differentiation of SH-SY5Y cells into neuronal cells, as supported by immunostaining and thus demonstrating its utility as a versatile scaffold for three-dimensional cell-culture systems.


Subject(s)
Biocompatible Materials , Cell Culture Techniques, Three Dimensional/methods , Chitosan , Hydrogels , A549 Cells , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Protein Carbamylation , Rheology , Viscosity
11.
Nanoscale ; 12(32): 17121-17131, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32785411

ABSTRACT

Titanium diboride (TiB2), a layered ceramic material, is well-known for its ultrahigh strength, wear resistance, and chemical inertness. In this work, we present a simple one-pot chemical approach that yields sheet-like nanostructures from TiB2. We serendipitously found that TiB2 crystals can undergo complete dissolution in a mild aqueous solution of H2O2 under ambient conditions. This unexpected dissolution of TiB2 is followed by non-classical recrystallization that results in nanostructures with sheet-like morphology exhibiting Ti-O and B-O functional groups. We show that this pathway can be used to obtain an aqueous dispersion of nanosheets with concentrations ≥3 mg mL-1. Interestingly, these nanosheets tend to transform into a hydrogel without the need of any additives. We found that the degree of gelation depends on the ratio of TiB2 to H2O2, which can be tuned to achieve gels with a shear modulus of 0.35 kPa. We also show this aqueous dispersion of nanosheets is processable and forms hierarchical paper-like macrostructures upon vacuum filtration. Such an ability to assemble into free-standing 3D structures would enable a leap to practical applications. We also show that the high surface area and presence of oxy-functional groups on these nanosheets endow them a superior photocatalytic activity to degrade organic pollutants. This exemplifies the rich potential that TiB2 offers upon nanoscaling. The results presented here not only add a novel material to the 2D flatland but also urge the scientific community to revisit the chemistry of metal borides, that have been traditionally considered as relatively inert ceramics.

SELECTION OF CITATIONS
SEARCH DETAIL