Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
J Thorac Dis ; 16(8): 4892-4903, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39268142

ABSTRACT

Background: It is crucial to identify patients at high risk for acute respiratory failure (ARF) to provide appropriate and optimal clinical treatment. While previous studies have explored the use of prognostic biomarkers based on a combination of blood urea nitrogen (BUN) and albumin levels, no reports to date have evaluated its utility across a wide range of ARF etiologies in a large and diverse critical care population. Therefore, we aimed to ascertain the association between the BUN-to-albumin ratio (BAR) and mortality in these patients. Methods: Data recorded in the first 24 h following intensive care unit (ICU) admission, including demographics, vital signs, laboratory test results, comorbidities, and score systems were retrieved from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. A general additive model was used to determine whether there was a non-linear relationship between BAR and 30-day mortality. A multivariate Cox analysis was performed to measure the association between them. Results: The study enrolled 9,734 patients with ARF. In comparison to survivors, non-survivors exhibited higher BAR [10.79 (6.25-18.81) vs. 7.35 (4.48-13.62), P<0.001]. The correlation between baseline BAR and 30-day all-cause mortality in patients with ARF was non-linear, with a significant inflection point (11.76 mg/g). The Kaplan-Meier curve demonstrated that ARF patients had higher 30-day all-cause mortality rates when they had higher BAR levels (>11.76 mg/g) with hazard ratio (HR) 1.54 [95% confidence interval (CI): 1.39-1.70]. Conclusions: A high BAR was linked to a higher risk of mortality in ARF patients. BAR is a straightforward and possibly useful prognostic biomarker for ARF.

2.
Protein Cell ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252612

ABSTRACT

Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to PKM2-dependent conventional caspase-3/GSDME cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-PD-1. In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.

3.
J Psychiatr Res ; 179: 105-116, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39270422

ABSTRACT

Depressive disorder (DD) ranks among the most prevalent, burdensome, and costly psychiatric conditions globally. It manifests through a range of emotional, cognitive, somatic, and behavioral symptoms. Mesenchymal Stem Cells (MSCs) have garnered significant attention due to their therapeutic potential via immunomodulation in neurological disorders. Our research indicates that MSCs treatment demonstrates a notable effect on a Chronic Unpredictable Mild Stress (CUMS)-induced DD model in mice, surpassing even Fluoxetine in its antidepressant efficacy. MSCs mitigate DD by inhibiting central nervous system inflammation and facilitating the conversion of microglial cells into an Arg1high anti-inflammatory state. The MSCs-derived TGF-ß1 is crucial for this Arg1high microglial cell transformation in DD treatment.

4.
Phys Rev Lett ; 133(7): 073801, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39213581

ABSTRACT

Quantum-limited timing jitter of soliton microcombs has long been recognized as their fundamental noise limit. Here, we surpass such limit by utilizing dispersive wave dynamics in multimode microresonators. Through the viscous force provided by these dispersive waves, the quantum-limited timing jitter can be suppressed to a much lower level that forms the ultimate fundamental noise limit of soliton microcombs. Our findings enable coherence engineering of soliton microcombs in the quantum regime, providing critical guidelines for using soliton microcombs to synthesize ultralow-noise microwave and optical signals.

5.
Huan Jing Ke Xue ; 45(8): 4448-4458, 2024 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-39168665

ABSTRACT

To elucidate the characteristics of VOCs chemical components during heavy pollution episodes, hourly online VOCs data derived from 11 heavy pollution events in Tianjin from 2019 to 2020 were employed. The positive matrix factorization (PMF) and conditional bivariate probability function (CBPF) were employed to analyze the sources of VOCs during heavy pollution episodes. The results indicated that the average VOCs volume fraction during these episodes was recorded at 35.7×10-9. Furthermore, it was observed that during the winter emergency response period, there was a discernible increase in the volume fraction of VOCs when compared to that during the autumn season. Specifically, there was a notable upswing of 48% in the olefins category, whereas alkanes registered a 4% increase. Additionally, the VOCs component structure changed significantly during the heavy pollution episodes. During the orange warning period, the proportion of alkanes increased by 36%, and the proportion of acetylene decreased by 32%. During the yellow warning period, the proportion of alkanes increased by 14%, and the proportion of acetylene decreased by 5%. During the emergency response period, motor vehicle emission sources, natural gas evaporative sources, and solvent use sources were the main contributors of VOCs in environmental receptors, contributing 17.5%, 15.4%, and 15.2%, respectively. Compared with that during the period antecedent to the emergency response, the contribution of vehicle emission sources and diesel volatile sources to VOCs in environmental receptors decreased by 2.0% to 5.5% and 2.1% to 6.6%, respectively, and the contribution of solvent use sources decreased by 0.2% to 2.4% during the yellow warning period. During the orange warning period, the contribution of motor vehicle emission sources was reduced by 0.1% to 8.3%, and the contribution of solvent use sources was reduced by 0.5% to 6.2%.


Subject(s)
Air Pollutants , Environmental Monitoring , Vehicle Emissions , Volatile Organic Compounds , China , Environmental Monitoring/methods , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Vehicle Emissions/analysis , Air Pollution/analysis , Seasons
6.
ACS Appl Mater Interfaces ; 16(34): 44927-44937, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39152899

ABSTRACT

Carbon molecular sieve (CMS) membranes have emerged as attractive gas membranes due to their tunable pore structure and consequently high gas separation performances. In particular, polyimides (PIs) have been considered as promising CMS precursors because of their tunable structure, superior gas separation performance, and excellent thermal and mechanical strength. In the present work, polyphosphoric acid (PPA) was employed as both cross-linker and porogen, it created pores within the PI polymeric matrix, while it also effectively acting as a cross-linker to regulate the ultramicropores of the CMS membranes, thus simultaneously improving both permeability and selectivity of the CMS membranes. By employing PI/PPA hybrid with PPA content of 5 wt % as a precursor, the obtained CMS membrane exhibited a CO2 and He permeability of 1378.3 Barrer and 1431.4 Barrer, respectively, which was an approximately 10-fold increase compared to the precursor membrane. Under optimized conditions, the CO2/CH4 and He/CH4 selectivity of the obtained CMS membrane reached 81.5 and 89.9, respectively, which was 278% and 307% higher than that of the pristine PI membrane. In addition, the membrane exhibited good long-term stability during a one-week continuous test. This study clearly denoted PPA can be used for precisely tailoring the ultramicroporosity of CMS membranes.

7.
World J Hepatol ; 16(7): 1018-1028, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39086533

ABSTRACT

BACKGROUND: Liver condition is a crucial prognostic factor for patients with hepatocellular carcinoma (HCC), but a convenient and comprehensive method to assess liver condition is lacking. Liver stiffness (LS) measured by two-dimensional shear wave elastography may help in assessing liver fibrosis and liver condition. Chronic hepatitis B (CHB) is an important risk factor for HCC progression, but LS was found to be less reliable in assessing liver fibrosis following hepatitis viral eradication. We hypothesize that the status of hepatitis virus infection would affect the accuracy of LS in assessing the liver condition. AIM: To test the feasibility and impact factors of using LS to assess liver condition in patients with HCC and CHB. METHODS: A total of 284 patients were retrospectively recruited and classified into two groups on the basis of serum CHB virus hepatitis B virus (HBV)-DNA levels [HBV-DNA ≥ 100.00 IU/mL as Pos group (n = 200) and < 100.00 IU/mL as Neg group (n = 84)]. Correlation analyses and receiver operating characteristic analyses were conducted to evaluate the relationship between LS and liver condition. RESULTS: A significant correlation was found between LS and most of the parameters considered to have the ability to evaluate liver condition (P < 0.05). When alanine aminotransferase (ALT) concentrations were normal (≤ 40 U/L), LS was correlated with liver condition indices (P < 0.05), but the optimal cutoff of LS to identify a Child-Pugh score of 5 was higher in the Neg group (9.30 kPa) than the Pos group (7.40 kPa). When ALT levels were elevated (> 40 U/L), the correlations between LS and liver condition indices were not significant (P > 0.05). CONCLUSION: LS was significantly correlated with most liver condition indices in patients with CHB and HCC. However, these correlations varied according to differences in HBV-DNA and transaminase concentrations.

8.
Nature ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198648

ABSTRACT

Human mutations in neuropeptide Y (NPY) have been linked to high body mass index but not altered dietary patterns1. Here we uncover the mechanism by which NPY in sympathetic neurons2,3 protects from obesity. Imaging of cleared mouse brown and white adipose tissue (BAT and WAT, respectively) established that NPY+ sympathetic axons are a smaller subset that mostly maps to the perivasculature; analysis of single-cell RNA sequencing datasets identified mural cells as the main NPY-responsive cells in adipose tissues. We show that NPY sustains the proliferation of mural cells, which are a source of thermogenic adipocytes in both BAT and WAT4-6. We found that diet-induced obesity leads to neuropathy of NPY+ axons and concomitant depletion of mural cells. This defect was replicated in mice with NPY abrogated from sympathetic neurons. The loss of NPY in sympathetic neurons whitened interscapular BAT, reducing its thermogenic ability and decreasing energy expenditure before the onset of obesity. It also caused adult-onset obesity of mice fed on a regular chow diet and rendered them more susceptible to diet-induced obesity without increasing food consumption. Our results indicate that, relative to central NPY, peripheral NPY produced by sympathetic nerves has the opposite effect on body weight by sustaining energy expenditure independently of food intake.

9.
J Colloid Interface Sci ; 676: 89-100, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018814

ABSTRACT

Graphite carbon nitride (g-C3N4) is a promising photocatalyst,but its inadequate reactive sites, weak visible light responsiveness, and sluggish separation of photogenerated carriers hamperthe improvement of photodegradation efficiency. In this work, potassium (K) and halogen atoms co-modified g-C3N4 photocatalysts (CN-KX, X = F, Cl, Br, I) were constructed to adjust the electrical and band structure for enhanced generation of reactive oxygen species. Through an integration of theoretical calculation and experimental exploration, the doping sites of halogen atoms as well as the evolution of crystal, band, and electronic structures were investigated. The results show that a covalent bond is formed between the F atom and the C atom, substitution of the N atom occurs with a Cl atom, and doping of Br, I, or K atoms takes place at the interstitial site. CN-KX photocatalysts exhibits lower band gap, faster photogenerated electron migration, and enhanced photocatalytic activity. Specifically, the CN-KI photocatalyst exhibits the highest photodegradation efficiency because of its smaller interplanar spacing, formation of the midgap state, and adjustable local electron density. Equally, the doping of I atom not only provides a stable adsorption site for oxygen (O2) but also facilitates electron transfer, promoting the production of superoxide radicals (O2-) and contributing to the process of photodegradation.

10.
Nat Commun ; 15(1): 5969, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013920

ABSTRACT

The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.


Subject(s)
Methanol , Methylobacterium , Methylobacterium/metabolism , Methylobacterium/genetics , Methylobacterium/enzymology , Methylobacterium/growth & development , Methanol/metabolism , Symbiosis , Mutation , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/growth & development , Methylobacterium extorquens/genetics , Methylobacterium extorquens/metabolism , Methylobacterium extorquens/growth & development , Methylobacterium extorquens/enzymology , Plant Development , Microbiota/genetics , Biomass
11.
Sci Rep ; 14(1): 15336, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961205

ABSTRACT

Confronted with the concurrent challenges of economic advancement and environmental management, this study explores whether implementing Intellectual Property Demonstration Policies (IPDP) can be a covert force in enhancing carbon emission efficiency. Utilizing panel data from 280 prefecture-level cities in China over the period 2007-2019, we employ a quasi-natural experimental design, incorporating multiple-period difference-in-differences models, mediation effect models, and spatial Durbin difference-in-differences models to assess the impacts of IPDP on carbon emission efficiency, its mechanisms of action, and its spatial spillover effects. The regression results of the multi-period difference-in-differences model reveal a statistically significant enhancement in carbon emission efficiency due to IPDP, with an impact coefficient of 0.044. Through heterogeneity tests, it is observed that the influence of IPDP on carbon emission efficiency varies based on regional characteristics, carbon emission levels, and the extent of marketization. The mediation effect model demonstrates that IPDP enhances carbon emission efficiency by fostering green technological innovation and facilitating the transformation of industrial structures. Furthermore, the spatial Durbin difference-in-differences model illustrates that IPDP positively influences the carbon emission efficiency of neighboring regions, indicating favorable spatial spillover effects. Notably, the indirect effect coefficients in the geographical distance matrix, economic distance matrix, and economic-geographical nested matrix are calculated as 0.673, 0.250, and 0.386, respectively. These findings offer compelling theoretical and empirical support for strengthening the intellectual property framework to optimize its environmental impact.

12.
Anal Chem ; 96(31): 12846-12853, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39048518

ABSTRACT

Rapid and accurate realization of in situ analysis of deep-sea dissolved gases imperative to the study of ecological geology, oil and gas resource exploration, and global climate change. Herein, we report for the first time the deep-sea dissolved methane (CH4) in situ sensor based on quartz-enhanced photoacoustic and light-induced thermoelastic spectroscopy. The developed sensor system has a volume of φ120 mm × 430 mm and a power consumption of 7.6 W. The sensor, in the manner of frequency division multiplexing, is able to simultaneously measure the photoacoustic signals and light-induced thermoelastic signals, which can accurately correct laser-intensity induced influence on concentration. The spectral response of CH4 concentration varying from 0.01 to 5% is calibrated in detail based on the pressure and temperature in the application environment. The trend of the photoacoustic signal of CH4 at different water molecule (H2O) concentrations is investigated. An Allan variance analysis of several hours demonstrates a minimum detection limit of 0.21 ppm for the CH4 spectrometer. The sensor combined with the gas-liquid separation and enrichment unit is integrated into a compact marine standalone system. Since the specifically designed photoacoustic cell has a volume of only 1.2 mL, the time response for dissolved CH4 detection is reduced to 4 min. Furthermore, the sensor is successfully deployed in the vicinity of the "HaiMa" cold seeps at 1380 m underwater in the South China Sea, completing three consecutive days of measurements of dissolved CH4.

14.
Neurotox Res ; 42(4): 30, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884699

ABSTRACT

Central nervous system oxygen toxicity (CNS-OT) is a complication of hyperbaric oxygen (HBO) treatment, with limited prevention and treatment options available. In this study, we aimed to explore the effect of polyethylene glycol 300 (PEG300) on CNS-OT and underlying mechanisms. Motor and cognitive functions of mice in normobaric conditions were evaluated by Morris water maze, passive active avoidance, and rotarod tests. HBO was applied at 6 atmospheres absolute (ATA) for 30 min after drug administration. The latency period of convulsion in mice was recorded, and hippocampal tissues were extracted for biochemical experiments. Our experimental results showed that PEG300 extended the convulsion latencies in CNS-OT mice, reduced oxidative stress and inflammation levels in hippocampal tissues. Furthermore, PEG300 preserved mitochondrial integrity and maintained mitochondrial membrane potential in hippocampal tissue by upregulating Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha (PGC-1α). This protective effect was enhanced following the administration of ZLN005, an agonist of PGC-1a. Hence, our study suggests that PEG300 might exert protective effects by upregulating PGC-1α expression and preserving mitochondrial health, offering promising prospects for CNS-OT treatment.


Subject(s)
Hippocampus , Mitochondria , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Polyethylene Glycols , Up-Regulation , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Male , Polyethylene Glycols/toxicity , Polyethylene Glycols/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Up-Regulation/drug effects , Up-Regulation/physiology , Oxygen/metabolism , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology
15.
Microbiol Spectr ; 12(8): e0081824, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38869307

ABSTRACT

Riverine islands are widespread alluvium wetlands developed in large rivers, and bacterial communities are crucial to their ecological function, yet their assembly processes are rarely addressed. The ecosystem services provided by the middle and the lower Yangtze are primarily threatened by pollution discharge from agricultural land use, and resource overutilization (e.g., embankments), respectively. Here, we assessed bacterial community assembly processes and their drivers within riverine islands in the middle Yangtze River (MR islands) and those in the lower reach (LR islands). A significant distance-decay relationship was observed, although the turnover rate was lower than that of the terrestrial ecosystem with less connectivity. Deterministic and stochastic processes jointly shaped community patterns, and the influence of stochastic increased from 26% in MR islands to 59% for those in LR islands. Meanwhile, the bacterial community in MR islands was controlled more by inorganic nitrogen availability, whereas those in LR islands were governed by pH and EC, although those factors explained a limited fraction of variation in the bacterial community. Potential indicator taxa (affiliated with Nocardioides and Lysobacter) characterized the waterway transport pollution. Overall, our study demonstrated that bacterial community dissimilarity and the importance of dispersal limitation increased concurrently along the flow direction, while distinct local factors further determined bacterial community compositions by selecting habitat-specificity taxa and particularly metabolism function. These findings enhanced our understanding of the mechanisms driving changes in bacterial communities of riverine islands subject to increased anthropogenic impacts.IMPORTANCERivers are among the most threatened ecosystems globally and face multiple stressors related to human activity. However, linkages between microbial diversity patterns and assembly processes in rivers remain unclear, especially in riverine islands developed in large rivers. Our findings reveal that distinct factors result in divergent bacterial community compositions and functional profiles in the riverine islands in the middle Yangtze and those in the lower Yangtze, with substantial differentiation in deterministic and stochastic processes that jointly contribute to bacterial community assemblages. Additionally, keystone species may play important metabolic roles in coping with human-related disturbances. This study provides an improved understanding of relationships between microbial diversity patterns and ecosystem functions under environmental changes in large river ecosystems.


Subject(s)
Bacteria , Ecosystem , Rivers , Rivers/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , China , Wetlands , Microbiota , Biodiversity , Islands
16.
Surg Endosc ; 38(8): 4543-4549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937313

ABSTRACT

PURPOSE: To explore the feasibility of peroral endoscopic myotomy (POEM) in patients with achalasia and hiatal hernia. MATERIALS AND METHODS: We performed a retrospective review of 2136 patients with achalasia between January 2016 and December 2022. Patients with achalasia and hiatal hernia were assigned into study group, and matched patients with achalasia but no hiatal hernia were assigned into control group. The preoperative baseline information, procedure-related adverse events (AEs) and follow-up data were compared between the two groups. RESULTS: Hiatal hernia was identified in 56/1564 (3.6%) patients with achalasia. All of these patients underwent POEM with success. The preoperative baseline characteristics were similar between the study and control group. The study group presented with a similar rate of mucosal injury (12.5% vs 16.1, P = 0.589), pneumothorax (3.6% vs 1.8%, P = 1.000), pleural effusion (8.9% vs 12.5%, P = 0.541) and major AEs (1.8% vs 1.8%, P = 1.000) compared with the control group. As for the follow-up data, no significant differences were observed in clinical success (96.4% vs 92.9%, P = 0.679; 93.6% vs 94.0%, P = 1.000; 86.5% vs 91.4%, P = 0.711) clinical reflux (25.0% vs 19.6%, P = 0.496; 31.9% vs 26.0%, P = 0.521; 35.1% vs 31.4%, P = 0.739) and proton pump inhibitor usage (17.9% vs 16.1%, P = 0.801; 29.8% vs 24.0%, P = 0.520; 32.4% vs 25.7%, P = 0.531) between the study group and control group at 1-year, 2-year and 3-year follow-ups. CONCLUSIONS: POEM is a safe and effective treatment for achalasia combined with hiatal hernia.


Subject(s)
Esophageal Achalasia , Hernia, Hiatal , Myotomy , Natural Orifice Endoscopic Surgery , Humans , Esophageal Achalasia/surgery , Esophageal Achalasia/complications , Hernia, Hiatal/surgery , Hernia, Hiatal/complications , Male , Female , Retrospective Studies , Middle Aged , Adult , Natural Orifice Endoscopic Surgery/methods , Treatment Outcome , Myotomy/methods , Feasibility Studies , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Aged , Esophagoscopy/methods
17.
Article in English | MEDLINE | ID: mdl-38900213

ABSTRACT

PURPOSE: Despite of very rare, breast cancer patients with double heterozygosity (DH) variants in BRCA1 and BRCA2 genes have been identified in other ethnic groups and seem to be associated with distinctive phenotypes. However, little is known about the frequency and clinical characteristics of Chinese breast cancer patients with BRCA1/2 DH variants. METHODS: Four hundred and eleven unrelated patients with BRCA1 or BRCA2 pathogenic variants (PVs) were identified in a large series of unselected breast cancer patients. Another two siblings with metachronous bilateral breast cancer were referred for genetic counseling, after which BRCA1/2 DH variants were detected. RESULTS: Four unrelated breast cancer patients with BRCA1/2 DH were identified in the cohort of 411 patients with BRCA1 or BRCA2 PVs, the frequency of BRCA1/2 DH was 0.97%. In total, six BRCA1/2 DH patients from five families were found in this study. In two families, the hereditary pattern of DH was speculated to have originated from both sides of the family. BRCA1/2 DH patients were more likely to have a family history of breast cancer than patients with a BRCA1 (100% vs. 29.2%, P = 0.004) or BRCA2 (100% vs. 29.6%, P = 0.004) single PV. BRCA1/2 DH patients were more likely to be triple-negative breast tumors than patients with single BRCA2 PVs (66.7% vs. 14.1%, P = 0.020), which was comparable to the findings in patients with single BRCA1 PVs (66.7% vs. 56.9%, P = 1.00). CONCLUSION: Chinese patients with BRCA1/2 DH exhibit a high percentage of family history of breast cancer. The tumor pathological features of BRCA1/2 DH carriers are similar to those of BRCA1 PV carriers.

18.
Cryobiology ; 116: 104933, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38925358

ABSTRACT

Echocardiography-guided percutaneous intramyocardial septal radiofrequency ablation (PIMSRA, Liwen procedure) is a novel treatment option for hypertrophic obstructive cardiomyopathy (HOCM). The safety and feasibility of using this procedure for cryoablation are unknown. We aimed to investigate the feasibility and safety of echocardiography-guided percutaneous intramyocardial septal cryoablation (PIMSCA) for septal thickness reduction in a canine model. Eight canines underwent PIMSCA, and had electrocardiography, echocardiography(ECG), myocardial contrast echocardiography (MCE), serological and pathological examinations during the preoperative, immediate postoperative, and 6-month follow-up. All eight canines underwent successful cryoablation and continued to be in sinus rhythm during ablation and without malignant arrhythmias. MCE showed that the ablation area had decreased myocardial perfusion after the procedure. Troponin I levels were significantly elevated [0.010 (0.005, 0.297) ng/mL vs. 3.122 (1.152, 7.990) ng/mL, p < 0.05)]. At 6-month follow-up after the procedure, all animals were alive, with thinning of the interventricular septum (7.26 ± 0.52 mm vs. 3.86 ± 0.29 mm, p < 0.05). Echocardiography showed no significant decrease in the left ventricular ejection fractions (LVEF) (54.32 ± 2.93 % vs. 54.70 ± 2.47 %, p > 0.05) or changes by pulse-wave Doppler E/A (1.17 ± 0.43 vs. 1.07 ± 0.43, p > 0.05), E/e' (8.09 ± 1.49 vs. 10.05 ± 2.68, p > 0.05). Pathological findings proved the effectiveness of cryoablation in myocardial tissues. We observed pericardial effusions and premature ventricular complexes (PVCs) associated with the procedure. Our findings provided preliminary evidence of the safety and feasibility of PIMSCA in reducing interventricular septum, which provides a potentially new treatment option for HOCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Cryosurgery , Echocardiography , Feasibility Studies , Heart Septum , Animals , Dogs , Cryosurgery/methods , Cardiomyopathy, Hypertrophic/surgery , Heart Septum/surgery , Electrocardiography , Disease Models, Animal , Male , Female , Follow-Up Studies , Troponin I/metabolism , Troponin I/blood
19.
Hum Reprod ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725195

ABSTRACT

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

20.
Opt Lett ; 49(10): 2629-2632, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748122

ABSTRACT

We propose and experimentally demonstrate a compact and efficient photonic convolution accelerator based on a hybrid integrated multi-wavelength DFB laser array by photonic wire bonding. The photonic convolution accelerator operates at 60.12 GOPS for one 3 × 3 kernel with a convolution window vertical sliding stride of 1 and generates 500 images of real-time image classification. Furthermore, real-time image classification on the MNIST database of handwritten digits with a prediction accuracy of 93.86% is achieved. This work provides a novel, to the best of our knowledge, compact hybrid integration platform to realize the optical convolutional neural networks.

SELECTION OF CITATIONS
SEARCH DETAIL