Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 6(4)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683995

ABSTRACT

Abdominal aortic aneurysms (AAA), are usually asymptomatic until rupture causes fatal bleeding, posing a major vascular health problem. AAAs are associated with advanced age, male gender, and cardiovascular risk factors (e.g. hypertension and smoking). Strikingly, AAA and AOD (arterial occlusive disease) patients have a similar atherosclerotic burden, yet develop either arterial dilatation or occlusion, respectively. The molecular mechanisms underlying this diversion are yet unknown. As this knowledge could improve AAA treatment strategies, we aimed to identify genes and signaling pathways involved. We compared RNA expression profiles of abdominal aortic AAA and AOD patient samples. Based on differential gene expression profiles, we selected a gene set that could serve as blood biomarker or as pharmacological intervention target for AAA. In this AAA gene list we identified previously AAA-associated genes COL11A1, ADIPOQ, and LPL, thus validating our approach as well as novel genes; CXCL13, SLC7A5, FDC-SP not previously linked to aneurysmal disease. Pathway analysis revealed overrepresentation of significantly altered immune-related pathways between AAA and AOD. Additionally, we found bone morphogenetic protein (BMP) signaling inhibition simultaneous with activation of transforming growth factor ß (TGF-ß) signaling associated with AAA. Concluding our gene expression profiling approach identifies novel genes and an interplay between BMP and TGF-ß signaling regulation specifically for AAA.

2.
Sci Rep ; 5: 16872, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26607280

ABSTRACT

Fibulins are extracellular matrix proteins associated with elastic fibres. Homozygous Fibulin-4 mutations lead to life-threatening abnormalities such as aortic aneurysms. Aortic aneurysms in Fibulin-4 mutant mice were associated with upregulation of TGF-ß signalling. How Fibulin-4 deficiency leads to deregulation of the TGF-ß pathway is largely unknown. Isolated aortic smooth muscle cells (SMCs) from Fibulin-4 deficient mice showed reduced growth, which could be reversed by treatment with TGF-ß neutralizing antibodies. In Fibulin-4 deficient SMCs increased TGF-ß signalling was detected using a transcriptional reporter assay and by increased SMAD2 phosphorylation. Next, we investigated if the increased activity was due to increased levels of the three TGF-ß isoforms. These data revealed slightly increased TGF-ß1 and markedly increased TGF-ß2 levels. Significantly increased TGF-ß2 levels were also detectable in plasma from homozygous Fibulin-4(R/R) mice, not in wild type mice. TGF-ß2 levels were reduced after losartan treatment, an angiotensin-II type-1 receptor blocker, known to prevent aortic aneurysm formation. In conclusion, we have shown increased TGF-ß signalling in isolated SMCs from Fibulin-4 deficient mouse aortas, not only caused by increased levels of TGF-ß1, but especially TGF-ß2. These data provide new insights in the molecular interaction between Fibulin-4 and TGF-ß pathway regulation in the pathogenesis of aortic aneurysms.


Subject(s)
Aorta/cytology , Extracellular Matrix Proteins/deficiency , Myocytes, Smooth Muscle/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta2/metabolism , Animals , Aorta, Thoracic/metabolism , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transforming Growth Factor beta2/blood
SELECTION OF CITATIONS
SEARCH DETAIL