Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(6): 3833-3841, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38747490

ABSTRACT

This study explores the realm of personalized medicine by investigating the utilization of 3D-printed dosage forms, specifically focusing on patient-specific enteric capsules designed for the modified release of ketoprofen, serving as a model drug. The research investigates two distinct scenarios: the modification of drug release from 3D-printed capsules crafted from hydroxypropyl methylcellulose phthalate:polyethylene glycol (HPMCP:PEG) and poly(vinyl alcohol) (PVA), tailored for pH sensitivity and delayed release modes, respectively. Additionally, a novel ketoprofen-loaded self-nanoemulsifying drug delivery system (SNEDDS) based on pomegranate seed oil (PSO) was developed, characterized, and employed as a fill material for the capsules. Through the preparation and characterization of the HPMCP:PEG based filament via the hot-melt extrusion method, the study thoroughly investigated its thermal and mechanical properties. Notably, the in vitro drug release analysis unveiled the intricate interplay between ketoprofen release, polymer type, and capsule thickness. Furthermore, the incorporation of ketoprofen into the SNEDDS exhibited an enhancement in its in vitro cylooxygenase-2 (COX-2) inhibitory activity. These findings collectively underscore the potential of 3D printing in shaping tailored drug delivery systems, thereby contributing significantly to the advancement of personalized medicine.


Subject(s)
Capsules , Drug Liberation , Emulsions , Ketoprofen , Precision Medicine , Printing, Three-Dimensional , Ketoprofen/chemistry , Precision Medicine/methods , Humans , Emulsions/chemistry , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Delayed-Action Preparations , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives , Polyvinyl Alcohol/chemistry
2.
J Pharm Sci ; 110(12): 3829-3837, 2021 12.
Article in English | MEDLINE | ID: mdl-34469748

ABSTRACT

Individualized drug delivery improves drug efficacy and safety for patients. To implement individualized drug delivery, patient-specific tailored dosages produced on a small scale are needed. However, current pharmaceutical manufacturing is not suitable for personalized dosage forms. Although convenient to deliver various drugs, current gelatin capsules using animal collagen protein have many limitations, such as releasing drugs too fast and incompatibility with some diets. In contrast, 3D printed capsules have great potential to advance individualized treatments. In this paper, we 3D printed and tested non-animal-based capsule shells for the delivery of acetaminophen. Capsule shells were composed of poly(vinyl) alcohol (PVA) and PVA blends with 5-25% hydroxypropyl methylcellulose (HPMC). Dissolution of acetaminophen when delivered in -hese capsule shells was tested using a USP dissolution test apparatus 2 (paddle type) at gastric pH. The novel shells were compared to each other and to commercially available hard gelatin capsules. Dissolution results show that acetaminophen when delivered in 3D printed capsules was slower than when delivered by gelatin capsules. Increasing the percentage of HPMC in the blend further delayed its release and dissolution. This delay could potentially increase the efficacy and reduce the side effects of acetaminophen. These shells also offer a non-animal-based alternative to gelatin capsules. Furthermore, 3D printing of capsule shells with specific polymer blends may be useful for patient-specific therapy in compounding pharmacies across the country.


Subject(s)
Acetaminophen , Gelatin , Animals , Capsules , Humans , Hypromellose Derivatives , Printing, Three-Dimensional , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL