Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.876
Filter
1.
J Leukoc Biol ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030724
2.
J Dermatol Sci ; 115(1): 33-41, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955622

ABSTRACT

BACKGROUND: Tryptophan metabolism dysregulation has been observed in vitiligo. However, drawing a mechanistic linkage between this metabolic disturbance and vitiligo pathogenesis remains challenging. OBJECTIVE: Aim to reveal the characterization of tryptophan metabolism in vitiligo and investigate the role of tryptophan metabolites in vitiligo pathophysiology. METHODS: LC-MS/MS, dual-luciferase reporter assay, ELISA, qRT-PCR, small interfering RNA, western blotting, and immunohistochemistry were employed. RESULTS: Kynurenine pathway activation and KYAT enzyme-associated deviation to kynurenic acid (KYNA) in the plasma of stable non-segmental vitiligo were determined. Using a public microarray dataset, we next validated the activation of kynurenine pathway was related with inflammatory-related genes expression in skin of vitiligo patients. Furthermore, we found that KYNA induced CXCL10 upregulation in keratinocytes via AhR activation. Moreover, the total activity of AhR agonist was increased while the AhR concentration per se was decreased in the plasma of vitiligo patients. Finally, higher KYAT, CXCL10, CYP1A1 and lower AhR expression in vitiligo lesional skin were observed by immunohistochemistry staining. CONCLUSION: This study depicts the metabolic and genetic characterizations of tryptophan metabolism in vitiligo and proposes that KYNA, a tryptophan-derived AhR ligand, can enhance CXCL10 expression in keratinocytes.


Subject(s)
Chemokine CXCL10 , Keratinocytes , Kynurenic Acid , Receptors, Aryl Hydrocarbon , Skin , Tryptophan , Up-Regulation , Vitiligo , Humans , Vitiligo/metabolism , Vitiligo/genetics , Vitiligo/blood , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Tryptophan/metabolism , Tryptophan/blood , Kynurenic Acid/blood , Kynurenic Acid/metabolism , Male , Keratinocytes/metabolism , Skin/metabolism , Skin/pathology , Adult , Female , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Kynurenine/metabolism , Kynurenine/blood , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Middle Aged , Case-Control Studies , Signal Transduction , Young Adult
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167351, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004382

ABSTRACT

Injuries to the retinal pigment epithelium (RPE) trigger immune responses, orchestrating interactions within the innate and adaptive immune systems in the outer retina and choroid. We previously reported that interleukin 17 (IL-17) is a pivotal signaling molecule originating from choroidal γδ T cells, exerting protective effects by mediating functional connections between the RPE and subretinal microglia. In this current study, we generated mice with aryl hydrocarbon receptor (AhR) knockout specifically in IL-17-producing cells. These animals had deficiency in IL-17 production from γδ T cells, and exhibited increased sensitivity to both acute and chronic insults targeting the RPE. These findings imply that IL-17 plays a crucial role as a signaling cytokine in preserving the homeostasis of the outer retina and choroid.

4.
Cells ; 13(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38994936

ABSTRACT

Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.


Subject(s)
Carbazoles , Receptors, Aryl Hydrocarbon , Skin , Humans , Receptors, Aryl Hydrocarbon/metabolism , Skin/metabolism , Carbazoles/pharmacology , Light , Animals , Vision, Ocular/physiology , Signal Transduction
5.
Environ Sci Pollut Res Int ; 31(32): 44789-44799, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954331

ABSTRACT

Cyprodinil, a globally utilized broad-spectrum pyrimidine amine fungicide, has been observed to elicit cardiac abnormality. Resveratrol (RSV), a naturally occurring polyphenolic compound, showcases remarkable defensive properties in nurturing cardiac development. To investigate whether RSV could protect against cyprodinil-induced cardiac defects, we exposed zebrafish embryos to cyprodinil (500 µg/L) in the presence or absence of RSV (1 µM). Our results showed that RSV significantly mitigated the decrease of survival rate and embryo movement and the hatching delay induced by cyprodinil. In addition, RSV also improved cyprodinil-induced zebrafish cardiac developmental toxicity, including pericardial edema and cardiac function impairment. In mechanism, RSV attenuated the cyprodinil-induced changes in mRNA expression involved in cardiac development, such as myh6, myl7, tbx5, and gata4, and calcium ion channels, such as ncx1h, slc8a4a, and atp2a2b. We further showed that RSV might inhibit the activity of aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. In summary, our findings establish that the protective effects of RSV against the cardiac developmental toxicity are induced by cyprodinil due to its remarkable ability to inhibit AhR activity. Our findings not only shed light on a new avenue for regulating and ensuring the safe utilization of cyprodinil but also presents a novel concept to promote its responsible use.


Subject(s)
Heart , Pyrimidines , Receptors, Aryl Hydrocarbon , Resveratrol , Zebrafish , Animals , Zebrafish/embryology , Resveratrol/pharmacology , Pyrimidines/toxicity , Pyrimidines/pharmacology , Heart/drug effects , Embryo, Nonmammalian/drug effects
6.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998940

ABSTRACT

Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.


Subject(s)
Receptors, Aryl Hydrocarbon , T-Lymphocytes, Regulatory , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/agonists , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Humans , Zebrafish , Fluorescent Dyes/chemistry , Ligands , Mice, Inbred C57BL , Indoles/pharmacology , Indoles/chemistry , Cell Differentiation/drug effects
7.
Adv Sci (Weinh) ; : e2404545, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041942

ABSTRACT

Microbial tryptophan (Trp) metabolites acting as aryl hydrocarbon receptor (AhR) ligands are shown to effectively improve metabolic diseases via regulating microbial community. However, the underlying mechanisms by which Trp metabolites ameliorate bone loss via gut-bone crosstalk are largely unknown. In this study, supplementation with Trp metabolites, indole acetic acid (IAA), and indole-3-propionic acid (IPA), markedly ameliorate bone loss by repairing intestinal barrier integrity in ovariectomy (OVX)-induced postmenopausal osteoporosis mice in an AhR-dependent manner. Mechanistically, intestinal AhR activation by Trp metabolites, especially IAA, effectively repairs intestinal barrier function by stimulating Wnt/ß-catenin signaling pathway. Consequently, enhanced M2 macrophage by supplementation with IAA and IPA secrete large amount of IL-10 that expands from intestinal lamina propria to bone marrow, thereby simultaneously promoting osteoblastogenesis and inhibiting osteoclastogenesis in vivo and in vitro. Interestingly, supplementation with Trp metabolites exhibit negligible ameliorative effects on both gut homeostasis and bone loss of OVX mice with intestinal AhR knockout (VillinCreAhrfl/fl). These findings suggest that microbial Trp metabolites may be potential therapeutic candidates against osteoporosis via regulating AhR-mediated gut-bone axis.

8.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980302

ABSTRACT

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Subject(s)
Indican , Kidney Failure, Chronic , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Humans , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Arachidonic Acid/metabolism , Male , Immunity, Innate/drug effects , Mice, Inbred C57BL , Arachidonate 5-Lipoxygenase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Trained Immunity
9.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063153

ABSTRACT

Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.


Subject(s)
Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Keratinocytes , NF-E2-Related Factor 2 , Phosphodiesterase 4 Inhibitors , Receptors, Aryl Hydrocarbon , Signal Transduction , Humans , NF-E2-Related Factor 2/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Phosphodiesterase 4 Inhibitors/pharmacology , Interleukin-33/metabolism , Signal Transduction/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line
10.
JACC Basic Transl Sci ; 9(5): 607-627, 2024 May.
Article in English | MEDLINE | ID: mdl-38984053

ABSTRACT

Patients with chronic kidney disease (CKD) face a high risk of cardiovascular disease. Previous studies reported that endogenous thrombospondin 1 (TSP1) involves right ventricular remodeling and dysfunction. Here we show that a murine model of CKD increased myocardial TSP1 expression and produced left ventricular hypertrophy, fibrosis, and dysfunction. TSP1 knockout mice were protected from these features. In vitro, indoxyl sulfate is driving deleterious changes in cardiomyocyte through the TSP1. In patients with CKD, TSP1 and aryl hydrocarbon receptor were both differentially expressed in the myocardium. Our findings summon large clinical studies to confirm the translational role of TSP1 in patients with CKD.

11.
J Periodontol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967396

ABSTRACT

BACKGROUND: The aryl hydrocarbon receptor (AhR) has been studied as an intracellular pattern recognition receptor that can identify bacterial pigments. To identify a potential therapeutic target for periodontitis, we investigated the expression of AhR in periodontitis and its role in the pathogenesis of periodontitis. METHODS: First, we analyzed AhR expression in a single-cell dataset from human periodontal tissue. Quantitative polymerase chain reaction (qPCR), immunofluorescence, and immunohistochemistry were used to verify the AhR level. Later, we determined the phenotypes of ligature-induced periodontitis in myeloid-specific AhR-deficient mice (Lyz2-Cre+/- AhRfx/fx), after which RNA sequencing (RNA-seq), qPCR, Western blot, immunofluorescence, and immunohistochemistry were used to investigate the impacts of AhR on periodontitis and its mechanism. Finally, we determined the therapeutic effect of AhR agonist 6-Formylindolo[3,2-b]carbazole (FICZ) administration on murine periodontitis and verified the effects of FICZ on macrophage polarization in vitro. RESULTS: AhR expression was enhanced in macrophages from periodontitis patients. Deletion of AhR from macrophages aggravated ligature-induced periodontitis and promoted the inflammatory response. Calcium/calmodulin-stimulated protein kinase II (CaMKII) phosphorylation was accelerated in AhR-deficient macrophages. Inhibiting CaMKII phosphorylation ameliorated periodontitis in Lyz2-Cre+/- AhRfx/fx mice. FICZ treatment blocked alveolar bone loss and relieved periodontal inflammation. FICZ diminished M1 macrophage polarization and promoted M2 macrophage polarization upon M1 macrophage induction. CONCLUSION: AhR played a protective role in the pathogenesis of periodontitis by orchestrating macrophage polarization via interacting with the CaMKII signaling pathway.

12.
Sci Total Environ ; 949: 174980, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053545

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) widely present in the environment, but their effect on cerebrovascular development has been rarely reported. In this study, dechorionated zebrafish embryos at 24 hpf were exposed to benzo(a)pyrene (BaP) at 0.5, 5 and 50 nM for 48 h, cerebrovascular density showed a significant reduction in the 5 and 50 nM groups. The expression of aryl hydrocarbon receptor (AhR) was significantly increased. Transcriptomic analysis showed that the pathway of positive regulation of vascular development was down-regulated and the pathway of inflammation response was up-regulated. The transcription of main genes related to vascular development, such as vegf, bmper, cdh5, f3b, itgb1 and prkd1, was down-regulated. Addition of AhR-specific inhibitor CH233191 in the 50 nM BaP group rescued cerebrovascular developmental defects and down-regulation of relative genes, suggesting that BaP-induced cerebrovascular defects was AhR-dependent. The cerebrovascular defects were persistent into adult fish raised in clean water, showing that the relative area of vascular network, the length of vessels per unit area and the number of vascular junctions per unit area were significantly decreased in the 50 nM group. Supplementation of berberine (BBR), a naturally derived medicine from a Chinese medicinal herb, alleviated BaP-induced cerebrovascular defects, accompanied by the restoration of altered expression of AhR and relative genes, which might be due to that BBR promoted BaP elimination via enhancing detoxification enzyme activities, suggesting that BBR could be a potential agent in the prevention of cerebrovascular developmental defects caused by PAHs.

13.
Int Immunopharmacol ; 138: 112610, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38963982

ABSTRACT

BACKGROUND: Traditional Chinese medicine, JianpiJiedu decoction (JPJDF), has been utilized in colorectal cancer (CRC) treatment for over forty years. The potential of JPJDF to inhibit CRC through modulation of intestinal microbiota and their metabolites remains uncertain. AIMS: This study aims to further investigate the therapeutic mechanisms of JPJDF in CRC. METHODS: CAC mouse models were developed using azoxymethane (AOM) and dextran sulfate sodium (DSS). Intestinal tissues and contents underwent 16S rRNA gene sequencing and untargeted metabolomics analysis. Serum levels of IL-1ß and TNF-α were measured using ELISA. Immunohistochemistry was utilized to assess the expression of Ki67, ZO-1, Occludin, CD68, and CD206. Furthermore, western blotting was performed to evaluate the protein expression of AhR and NF-κB. RESULTS: JPJDF inhibited colorectal tumourigenesis in AOM/DSS treated mice, while also suppressing tumor cell proliferation and upregulating the expression of tight junction proteins. The results of 16S rRNA gene sequencing analysis revealed that JPJDF altered intestinal microbiota composition by increasing the abundance of beneficial bacteria. Additionally, JPJDF reduced tryptophan metabolites, effectively alleviating inflammation and significantly restoring intestinal barrier function in CAC mice. Molecular biology experiments confirmed that JPJDF suppressed the expression levels of AhR and M2-type tumor-associated macrophages, thereby promoting anti-tumor immunity and exerting inhibitory effects on CAC growth. CONCLUSION: JPJDF can regulate the tryptophan metabolism-AhR pathway by modulating the gut microbiota, reducing intestinal inflammation, improving intestinal barrier function, enhancing anti-tumor immunity, and effectively inhibiting CAC growth.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Tryptophan/metabolism , Mice , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome/drug effects , Humans , Signal Transduction/drug effects , Male , Dextran Sulfate , Mice, Inbred C57BL , Azoxymethane , Cell Proliferation/drug effects , Disease Models, Animal , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism
14.
Chemosphere ; 363: 142885, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025314

ABSTRACT

Particulate matter of aerodynamic diameter ≤2.5 µm (PM2.5) exposure induces oxidative stress in lung tissues. Ferroptosis is a form of regulated cell death based on oxidative damage and lipid peroxidation. Whether PM2.5 exposure-induced oxidative stress can promote ferroptosis to aggravate asthma is not known. To investigate if PM2.5 exposure induces oxidative stress to promote ferroptosis and influence asthma development, a cockroach extract-induced asthma model in mice was used for in vivo studies. Airway epithelial cell (AEC) ferroptosis was detected by assays (CCK8, malonaldehyde, and 4-hydroxynonenal). Molecular mechanisms were investigated by real-time reverse transcription-quantitative polymerase chain reaction, western blotting, flow cytometry, liquid chromatography-tandem mass spectrometry, and chromatin immunoprecipitation. We found that exposure to PM2.5 and Indeno[1,2,3-cd] pyrene (IP; one of the prominent absorbed polycyclic aromatic hydrocarbons in PM2.5) enhanced the sensitivity of AECs to ferroptosis to aggravate asthma, whereas ferroptosis inhibitors and cytosolic phospholipase A2 (cPLA2) inhibitors reversed this augmented inflammatory response in mice suffering from asthma. IP treatment enhanced cPLA2 expression/activation through aryl hydrocarbon receptor (AhR) genomic and non-genomic pathways, resulting in arachidonic-acid release to promote the sensitivity of AECs to ferroptosis. IP exposure enhanced the release of leukotriene-B4 from lung macrophages, resulting in enhanced expression of acyl-coA synthetase long chain family member4 (ACSL4) and the sensitivity of AECs to ferroptosis. This finding suggests that exposure to PM2.5 and IP promote ferroptosis sensitivity in AECs to aggravate asthma, which may provide new targets for the prevention and treatment of asthma.

15.
Gut Microbes ; 16(1): 2377576, 2024.
Article in English | MEDLINE | ID: mdl-39068517

ABSTRACT

The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.


A HFD can lead to the development of colitis by disrupting tryptophan metabolism in the gut microbiome and lowering levels of IAA. Supplementation with IAA has been shown to alleviate colitis in mice and improve intestinal barrier function. It is believed that IAA may activate the AHR to upregulate the expression of Papss2 and Slc35b3, promoting sulfation modification of mucins and protecting the intestinal barrier. HFD, high-fat diet; AHR, aryl hydrocarbon receptor; IAA, indole-3-acetic acid; Papss2, 3'-phosphoadenosine 5'-phosphosulfate synthase 2; Slc35b3, solute carrier family 35 member B3.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Indoleacetic Acids , Intestinal Mucosa , Mucins , Animals , Humans , Mice , Gastrointestinal Microbiome/drug effects , Mucins/metabolism , Indoleacetic Acids/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Inbred C57BL , Colitis/microbiology , Colitis/metabolism , Colitis/chemically induced , Limosilactobacillus reuteri/metabolism , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/drug therapy , Diet, High-Fat/adverse effects , Male , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Disease Models, Animal
16.
Environ Sci Pollut Res Int ; 31(35): 48758-48772, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39039370

ABSTRACT

Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely found as cereal contaminants, and their co-consumption is associated with liver cancer. Both are immunotoxic, but their interactions have been little studied. This work was aimed to evaluate in mouse spleen mononuclear cells (SMC) the effects of the exposure to AFB1 (5-50 µM), FB1 (25-250 µM), and AFB1-FB1 mixtures (MIX) on the in vitro differentiation of regulatory T cells (Treg and Tr1-like) and Th17 cells, as well as elucidate the contribution of aryl hydrocarbon receptor (Ahr) in such effects. AFB1 and mainly MIX induced cytotoxicity in activated CD4 cells via Ahr signaling. AFB1 (5 µM) increased the Treg cell differentiation, but its combination with FB1 (25 µM) also reduced Th17 cell expansion by Ahr-dependent mechanisms. Therefore, this mixture could enhance the Treg/Th17 cell ratio and favor immunosuppression and escape from tumor immunosurveillance to a greater extent than individual mycotoxins. Whereas, AFB1-FB1 mixtures at medium-high doses inhibited the Tr1-like cell expansion induced by the individual mycotoxins and affected Treg and Th17 cell differentiation in Ahr-independent and dependent manners, respectively, which could alter anti-inflammatory and Th17 immune responses. Moreover, individual FB1 altered regulatory T and Th17 cell development independently of Ahr. In conclusion, AFB1 and FB1 interact by modifying Ahr signaling, which is involved in the immunotoxicity as well as in the alteration of the differentiation of Treg, Tr1-like, and Th17 cells induced by AFB1-FB1 mixtures. Therefore, Ahr is implicated in the regulation of the anti- and pro-inflammatory responses caused by the combination of AFB1 and FB1.


Subject(s)
Aflatoxin B1 , Cell Differentiation , Fumonisins , Receptors, Aryl Hydrocarbon , T-Lymphocytes, Regulatory , Th17 Cells , Receptors, Aryl Hydrocarbon/metabolism , Aflatoxin B1/toxicity , Animals , Th17 Cells/drug effects , T-Lymphocytes, Regulatory/drug effects , Fumonisins/toxicity , Mice , Cell Differentiation/drug effects
17.
J Dermatol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894607

ABSTRACT

Staphylococcus aureus (S. aureus) commonly reside on human skin in residents in long-term care facilities, yet its colonization and impact on the skin of hemodialysis (HD) patients have yet to be studied. The aim of the present study was to investigate the colonization of S. aureus on the skin of pruritic and non-pruritic HD patients, and the influence of S. aureus and S. aureus-secreted α-toxin on skin barrier function-related protein expression. In this study, a higher relative S. aureus count in pruritic HD patients compared to non-pruritic HD patients and healthy subjects were revealed by real-time polymerase chain reaction. S. aureus and α-toxin decreased mRNA and protein expression levels of aryl hydrocarbon receptor (AHR), ovo-like transcriptional repressor 1 (OVOL1), and filaggrin (FLG) in keratinocytes. In addition, anti-alpha-hemolysin (anti-hla) was used as an α-toxin neutralizer, and it successfully abrogated S. aureus-induced AHR, OVOL1, and FLG mRNA and protein expression downregulation. Mechanistically, α-toxin could decrease FLG activity by preventing the recruitment of AHR to the FLG promoter region. In conclusion, pruritic HD patients had higher S. aureus colonization, with S. aureus-secreted α-toxin suppressing FLG expression through the AHR-FLG axis.

18.
Imeta ; 3(1): e163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38868507

ABSTRACT

Bioactive dietary fiber has been proven to confer numerous health benefits against metabolic diseases based on the modification of gut microbiota. The metabolic protective effects of glucomannan have been previously reported in animal experiments and clinical trials. However, critical microbial signaling metabolites and the host targets associated with the metabolic benefits of glucomannan remain elusive. The results of this study revealed that glucomannan supplementation alleviated high-fat diet (HFD)-induced insulin resistance in mice and that its beneficial effects were dependent on the gut microbiota. Administration of glucomannan to mice promoted the growth of Bacteroides ovatus. Moreover, colonization with B. ovatus in HFD-fed mice resulted in a decrease in insulin resistance, accompanied by improved intestinal barrier integrity and reduced systemic inflammation. Furthermore, B. ovatus-derived indoleacetic acid (IAA) was established as a key bioactive metabolite that fortifies intestinal barrier function via activation of intestinal aryl hydrocarbon receptor (AhR), leading to an amelioration in insulin resistance. Thus, we conclude that glucomannan acts through the B. ovatus-IAA-intestinal AhR axis to relieve insulin resistance.

19.
Placenta ; 154: 9-17, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38830294

ABSTRACT

The maternal-fetal interface is composed of the placenta, which is affiliated with the fetus, and the maternal decidua. During pregnancy, the placenta is mainly responsible for nutrient transport and immune tolerance maintenance, which plays a key role in fetal growth and development and pregnancy maintenance. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that exists in various cell types at the maternal-fetal interface and is involved in multiple cellular processes. Recent studies have highlighted the role of AhR in regulating various physiological processes, including glucose and lipid metabolism, as well as tryptophan metabolism and immune responses, within non-pregnant tissues. This review shifts focus towards understanding how AhR modulation impacts metabolism and immune regulation at the maternal-fetal interface. This may implicate the development of pregnancy-related complications and the potential target of the AhR pathway for therapeutic strategies against poor pregnancy outcomes.

20.
J Appl Toxicol ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837244

ABSTRACT

Engineered stone-associated silicosis is characterised by a rapid progression of fibrosis linked to a shorter duration of exposure. To date, there is lack of information about molecular pathways that regulates disease development and the aggressiveness of this form of silicosis. Therefore, we compared transcriptome responses to different engineered stone samples and standard silica. We then identified and further tested a stone dust specific pathway (aryl hydrocarbon receptor [AhR]) in relation to mitigation of adverse lung cell responses. Cells (epithelial cells, A549; macrophages, THP-1) were exposed to two different benchtop stone samples, standard silica and vehicle control, followed by RNA sequencing analysis. Bioinformatics analyses were conducted, and the expression of dysregulated AhR pathway genes resulting from engineered stone exposure was then correlated with cytokine responses. Finally, we inhibited AhR pathway in cells pretreated with AhR antagonist and observed how this impacted cell cytotoxicity and inflammation. Through transcriptome analysis, we identified the AhR pathway genes (CYP1A1, CYP1B1 and TIPARP) that showed differential expression that was unique to engineered stones and common between both cell types. The expression of these genes was positively correlated with interleukin-8 production in A549 and THP-1 cells. However, we only observed a mild effect of AhR pathway inhibition on engineered stone dust induced cytokine responses. Given the dual roles of AhR pathway in physiological and pathological processes, our data showed that expression of AhR target genes could be markers for assessing toxicity of engineered stones; however, AhR pathway might not play a significant pathologic role in engineered stone-associated silicosis.

SELECTION OF CITATIONS
SEARCH DETAIL