Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.022
Filter
1.
Article in English | MEDLINE | ID: mdl-38964835

ABSTRACT

Seven new oleanane-type triterpene saponins, lysimaponins A-G, were isolated from aerial parts of Lysimachia laxa Baudo. Their chemical structures have been elucidated by analysis of spectroscopic and chemical methods. All compounds were evaluated for their anti-bacterial effects against Microcystis aeruginosa, Vibrio parahaemolyticus, V. harveyi, V. vulinificus, V. cholerae, and V. alginolyticus. All compounds showed potent anti-bacterial activities against the cyanobacteria M. aeruginosa with IC50 values ranging from 14.4 ± 1.2 to 35.3 ± 2.2 µg/mL. Compounds 1, 2, 4-7 inhibited V. parahaemolyticus with MIC values ranging from 64 to 256 µg/mL. The results suggested that saponins from L. laxa could be potential anti-cyanobacteria agents.

2.
Prep Biochem Biotechnol ; : 1-10, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970798

ABSTRACT

The excessive use of conventional antibiotics has resulted in significant aquatic pollution and a concerning surge in drug-resistant bacteria. Efforts have been consolidated to explore and develop environmentally friendly antimicrobial alternatives to mitigate the imminent threat posed by multi-resistant pathogens. Antimicrobial peptides (AMPs) have gained prominence due to their low propensity to induce bacterial resistance, attributed to their multiple mechanisms of action and synergistic effects. Microalgae, particularly cyanobacteria, have emerged as promising alternatives with antibiotic potential to address these challenges. The aim of this review is to present some AMPs extracted from microalgae, emphasizing their activity against common pathogens and elucidating their mechanisms of action, as well as their potential application in the aquaculture industry. Likewise, the biosynthesis, advantages and disadvantages of the use of AMPs are described. Currently, biotechnology tolls are used to enhance the action of these peptides, such as genetically modified microalgae and recombinant proteins. Cyanobacteria are also mentioned as major producers of peptides, among them, the genus Lyngbya is described as the most important producer of bioactive peptides with potential therapeutic use. The majority of cyanobacterial AMPs are of the cyclic type, meaning that they have cysteine and disulfide bridges, thanks to this, their greater antimicrobial activity and selectivity. Likewise, we found that large hydrophobic aromatic amino acid residues increase specificity, and improve antibacterial efficacy. However, based on the results of this review, it is possible to highlight that while microalgae show potential as a source of AMPs, further research in this field is necessary to achieve safe and competitive production. Therefore, the data presented here can aid in the selection of microalgal species, peptide structures, and target bacteria, with the goal of establishing biotechnological platforms for aquaculture applications.

3.
Int J Biol Macromol ; : 133632, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971279

ABSTRACT

In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Šand 2.0 Šin Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.

4.
J Biol Chem ; : 107532, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971311

ABSTRACT

All cyanobacteria and some chemoautotrophic bacteria fix CO2 into sugars using specialized proteinaceous compartments called carboxysomes. Carboxysomes enclose the enzymes Rubisco and carbonic anhydrase inside a layer of shell proteins to increase the CO2 concentration for efficient carbon fixation by Rubisco. In the ⍺-carboxysome lineage, a disordered and highly repetitive protein named CsoS2 is essential for carboxysome formation and function. Without it, the bacteria require high CO2 to grow. How does a protein predicted to be lacking structure serve as the architectural scaffold for such a vital cellular compartment? In this study, we identify key residues present in the repeats of CsoS2, VTG and Y, which are necessary for building functional ⍺-carboxysomes in vivo. These highly conserved and repetitive residues contribute to the multivalent binding interaction and phase separation behavior between CsoS2 and shell proteins. We also demonstrate 3-component reconstitution of CsoS2, Rubisco, and shell proteins into spherical condensates, and show the utility of reconstitution as a biochemical tool to study carboxysome biogenesis. The precise self-assembly of thousands of proteins is crucial for carboxysome formation, and understanding this process could enable their use in alternative biological hosts or industrial processes as effective tools to fix carbon.

5.
Water Res ; 261: 121974, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38981355

ABSTRACT

Aeration is used globally as a remediation method for lakes and reservoirs with methods generally falling into two categories, those which preserve natural stratification (hypolimnetic aeration; HA) and those which destratify reservoirs through mixing of the water column (destratification aeration; DA). The United Kingdom and Australia largely focus on DA methods to manage harmful algal blooms and decrease trace metal concentrations, whereas the United States and Europe frequently focus on HA techniques to increase dissolved oxygen (DO) concentrations and decrease benthic nutrient and metal release from the sediment. A more holistic understanding of how the different techniques influence water quality in regard to raw water supply and ecosystem health should lead to more efficient treatment, reducing wasted energy and other costs during both reservoir management and the drinking-water treatment process. This study compares HA and DA on stratification, DO, and cyanobacteria concentrations in a single drinking-water supply reservoir during the 2016 summer stratification period. HA preserved stratification but could not maintain sufficient hypolimnetic DO past late April in this functionally eutrophic reservoir, establishing conditions favourable to cyanobacteria. An incipient cyanobacteria bloom formed that was subsequently dispersed after DA was initiated on May 05. Continuous monitoring revealed the formation of these issues in real-time and informed a switch from HA to DA, thereby allowing for a pro-active rather than reactive approach to reservoir management and subsequent drinking-water treatment. Both HA and DA are put forward as successful aeration strategies depending on management goals; however, performance is strongly site-specific. Such approaches are likely to become increasingly important as reservoir management tools to combat stratification-driven water quality issues under the pressing threats of anthropogenic activity and climate change.

7.
Nat Prod Res ; : 1-3, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953393

ABSTRACT

Cyanobacteria, as oxygenic phototrophs, offer significant potential for sustainable biotechnology applications. Cyanobacterial natural products, with antimicrobial, anticancer, and plant growth-promoting properties, hold promise in pharmaceuticals, agriculture, and environmental remediation. By leveraging advanced technologies, cyanobacteria can significantly impact various industries, supporting the green biotechnology agenda. Recent advancements in integrated omics, orphan gene cluster activation, genetic manipulation, and chemo-enzymatic methods are expanding their biotechnological relevance. Omics technologies revolutionize cyanobacterial natural product research by facilitating biosynthetic gene cluster identification. Heterologous expression and pathway reconstitution enable complex natural product production, while high-titer strategies like metabolic engineering enhance yields. Interdisciplinary research and technological progress position cyanobacteria as valuable sources of bioactive compounds, driving sustainable biotechnological practices forward.

8.
Astrobiology ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979614

ABSTRACT

The key building blocks for life on Mars could be preserved within potentially habitable paleo-depositional settings with their detection possible by utilizing mid-infrared spectroscopy; however, a definite identification and confirmation of organic or even biological origin will require the samples to be returned to Earth. In the present study, Fourier-transform infrared (FTIR) spectroscopic techniques were used to characterize both mineralogical and organic materials within Mars dust simulant JSC Mars-1 and ancient Antarctic cyanobacterial microbial mats from 1901 to 1904 Discovery Expedition. When FTIR spectroscopy is applied to cyanobacterial microbial mat communities, the resulting spectra will reflect the average biochemical composition of the mats rather than taxa-specific spectral patterns of the individual organisms and can thus be considered as a total chemical analysis of the mat colony. This study also highlights the potential difficulties in the detection of these communities on Mars and which spectral biosignatures will be most detectable within geological substrates. Through the creation and analysis of a suite of dried microbial mat material and Martian dust simulant mixtures, the spectral signatures and wavenumber positions of CHx aliphatic hydrocarbons and the C-O and O-H bands of polysaccharides remained detectable and may be detectable within sample mixtures obtained through Mars Sample Return activities.

9.
Environ Monit Assess ; 196(8): 686, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958830

ABSTRACT

Environmental contamination by chromium represents a serious public health problem. Therefore, it is crucial to develop and optimize remediation technologies to reduce its concentration in the environment. The aims of this study were to evaluate the uptake of chromium by live and complete microbial mats in experimental mesocosms under different pH and salinity conditions to understand how these factors affect the microphytobenthic community and, consequently, how chromium removal process is influenced. Microbial mats from the estuarine environment were exposed to 15 mg Cr/L under different pH (2, 4, and 8) and salinity (2, 15, and 33) conditions. Salinity, redox potential, and pH were measured throughout the trial in solutions and in microbial mats, while total Cr determinations were performed at the end of the assay. The results demonstrated that the removal efficiency of Cr by microbial mats was significantly improved in solutions at pH 2, remaining unaffected by variations in salinity. Notably, both cyanobacteria and diatoms showed remarkable resistance to Cr exposure under all conditions tested, highlighting their exceptional adaptability. Microbial mats have proved to be effective filters for reducing the concentration of chromium in aqueous solutions with varying pH and salinity levels.


Subject(s)
Chromium , Salinity , Water Pollutants, Chemical , Chromium/analysis , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis , Cyanobacteria , Diatoms , Biodegradation, Environmental
10.
Sci Total Environ ; 946: 174383, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960197

ABSTRACT

Cyanobacterial blooms are a common and serious problem in global freshwater environments. However, the response mechanisms of various cyanobacterial genera to multiple nutrients and pollutants, as well as the factors driving their competitive dominance, remain unclear or controversial. The relative abundance and cell density of two dominant cyanobacterial genera (i.e., Cyanobium and Microcystis) in river ecosystems along a gradient of anthropogenic disturbance were predicted by random forest with post-interpretability based on physicochemical indices. Results showed that the optimized predictions all reached strong fitting with R2 > 0.75, and conventional water quality indices played a dominant role. One-dimensional and two-dimensional partial dependence plot (PDP) revealed that the responses of Cyanobium and Microcystis to nutrients and temperature were similar, but they showed differences in preferrable nutrient utilization and response to pollutants. Further prediction and PDP for the ratio of Cyanobium and Microcystis unveiled that their distinct responses to PAHs and SPAHs were crucial drivers for their competitive dominance over each other. This study presents a new way for analyzing the response of cyanobacterial genera to multiple environmental factors and their dominance relationships by interpretable machine learning, which is suitable for the identification and interpretation of high-dimensional nonlinear ecosystems with complex interactions.

11.
Chemosphere ; : 142815, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986786

ABSTRACT

Continuous nitrate treatment is an innovative, nature-based and cost-effective restoration method that has been implemented in a small, hypereutrophic lake by redirecting the nitrate-rich waters of the lake's natural tributaries into its hypolimnion. The aim of this treatment is to increase the redox potential at the sediment-water interface in order to provide conditions for efficient phosphorus binding. To assess the effects of this treatment, studies of the physico-chemical and biological parameters of the lake waters were carried out before its application (PreNT - years 2005-2007), during its application (FullNT - 2008 - July 2019), and in the period when installation was partly clogged (LimNT- August 2019-2021). The results show effective improvement of oxygenation of the hypolimnion during the treatment followed by a decrease of phosphorus concentration - a proxy of the reduced internal loading. Water quality gradually improved during the treatment. The periods of cyanobacterial blooms shortened in some years, and ceased in other years, and it was also manifested by the increase in the range of Secchi depth and a decrease in chlorophyll-a concentration. The share of eukaryotic algae in the phytoplankton increased. The method showed high resistance to disturbances in its functioning, because during two years of operation of one pipeline, only a slight deterioration of water quality was observed. This enables effective repair of the hypolimnion's supply of nitrates, without a sudden return to the pre-restoration state. Finally, the benefits and limitations of hypolimnetic nitrate treatment (with nitrate from natural sources) were discussed to facilitate the application of this method to other lakes.

12.
Bioresour Technol ; : 131089, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986884

ABSTRACT

Limnospira maxima has been adapted to grow in high salinity and in an economically alternative medium using industrial-grade fertilizers under harsh environmental conditions in Saudi Arabia. A sequence of scaling-up processes, from the laboratory to large-scale open raceways, was conducted along with gradual adaptation to environmental stress (salinity, light, temperature, pH). High biomass concentration at harvest point and areal productivity were achieved during the harsh summer season (1.122 g L-1 and 60.35 g m-2 day-1, respectively). The average protein content was found to be above 40 % of dry weight. Changes in the color and morphological appearance of the L. maxima culture were observed after direct exposure to sunlight in the outdoor raceways. These results demonstrate a successful and robust adaptation method for algal cultivation at outdoor large-scale in harsh environment (desert conditions) and also prove the feasibility of using hypersaline seawater (42 g kg-1) as an algal growth medium.

13.
Sci Total Environ ; 947: 174504, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971250

ABSTRACT

Cyanobacteria blooms in fishponds, driven by climate change and anthropogenic activities, have become a critical concern for aquatic ecosystems worldwide. The diversity in fishpond sizes and fish densities further complicates their monitoring. This study addresses the challenge of accurately predicting cyanobacteria concentrations in turbid waters via remote sensing, hindered by optical complexities and diminished light signals. A comprehensive dataset of 740 sampling points was compiled, encompassing water quality metrics (cyanobacteria levels, total chlorophyll, turbidity, total cell count) and spectral data obtained through AlgaeTorch, alongside Sentinel-2 reflectance data from three Trebon fishponds (UNESCO Man and Biosphere Reserve) in the Czech Republic over 2022-2023. Partial Least Squares Regression (PLSR) and three machine learning algorithms, Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost), were developed based on seasonal and annual data volumes. The SVM algorithm demonstrated commendable performance on the one-year data validation dataset from the Svet fishpond for the prediction of cyanobacteria, reflected by the key performance indicators: R2 = 0.88, RMSE = 15.07 µg Chl-a/L, and RPD = 2.82. Meanwhile, SVM displayed steady results in the unified one-year validation dataset from Nadeje, Svet, and Vizír fishponds, with metrics showing R2 = 0.56, RMSE = 39.03 µg Chl-a/L, RPD = 1.50. Thus, Sentinel data proved viable for seasonal cyanobacteria monitoring across different fishponds. Overall, this study presents a novel approach for enhancing the precision of cyanobacteria predictions and long-term ecological monitoring in fishponds, contributing significantly to the water quality management strategies in the Trebon region.

14.
Crit Rev Biotechnol ; : 1-19, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987975

ABSTRACT

Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.

15.
Toxicon X ; 23: 100199, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38974839

ABSTRACT

Biocrusts dominate the soil surface in deserts and are composed of diverse microbial communities that provide important ecosystem services. Cyanobacteria in biocrusts produce many secondary metabolites, including the neurotoxins BMAA, AEG, DAB, anatoxin-a(S) (guanitoxin), and the microcystin hepatotoxins, all known or suspected to cause disease or illness in humans and other animals. We examined cyanobacterial growth and prevalence of these toxins in biocrusts at millimeter-scales, under a desert-relevant illumination gradient. In contrast to previous work, we showed that hydration had an overall positive effect on growth and toxin accumulation, that nitrogen was not correlated with growth or toxin production, and that phosphorus enrichment negatively affected AEG and BMAA concentrations. Excess illumination positively correlated with AEG, and negatively correlated with all other toxins and growth. Basic pH negatively affected only the accumulation of BMAA. Anatoxin-a(S) (guanitoxin) was not correlated with any tested variables, while microcystins were not detected in any of the samples. Concerning toxin pools, AEG and BMAA were good predictors of the presence of one another. In a newly conceptualized scheme, we integrate aspects of biocrust growth and toxin pool accumulations with arid-relevant desertification drivers.

16.
Adv Sci (Weinh) ; : e2400251, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867396

ABSTRACT

Photosynthesis, essential for life on earth, sustains diverse processes by providing nutrition in plants and microorganisms. Especially, photosynthesis is increasingly applied in disease treatments, but its efficacy is substantially limited by the well-known low penetration depth of external light. Here, ultrasound-mediated photosynthesis is reported for enhanced sonodynamic tumor therapy using organic sonoafterglow (ultrasound-induced afterglow) nanoparticles combined with cyanobacteria, demonstrating the proof-of-concept sonosynthesis (sonoafterglow-induced photosynthesis) in cancer therapy. Chlorin e6, a typical small-molecule chlorine, is formulated into nanoparticles to stimulate cyanobacteria for sonosynthesis, which serves three roles, i.e., overcoming the tissue-penetration limitations of external light sources, reducing hypoxia, and acting as a sonosensitizer for in vivo tumor suppression. Furthermore, sonosynthetic oxygenation suppresses the expression of hypoxia-inducible factor 1α, leading to reduced stability of downstream SLC7A11 mRNA, which results in glutathione depletion and inactivation of glutathione peroxidase 4, thereby inducing ferroptosis of cancer cells. This study not only broadens the scope of microbial nanomedicine but also offers a distinct direction for sonosynthesis.

17.
Front Microbiol ; 15: 1293087, 2024.
Article in English | MEDLINE | ID: mdl-38868094
18.
Harmful Algae ; 136: 102656, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876531

ABSTRACT

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Subject(s)
Bays , Harmful Algal Bloom , Phytoplankton , Planktothrix , Phytoplankton/physiology , Phytoplankton/growth & development , Bays/microbiology , Microcystins/metabolism , Microcystins/analysis , Environmental Monitoring , Seasons , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Cyanobacteria/growth & development , Cyanobacteria/physiology , Cyanobacteria/genetics
19.
Ambio ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874849

ABSTRACT

Lake management actions are required to protect lake ecosystems that are being threatened by climate change. Freshwater lakes in semiarid regions are of upmost importance to their region. Simulations of the subtropical Lake Kinneret project that rising temperatures will cause change to phytoplankton species composition, including increased cyanobacteria blooms, endangering lake ecosystem services. Using lake ecosystem models, we examined several management actions under climate change, including two alternatives of desalinated water introduction into the lake, hypolimnetic water withdrawal, watershed management changes and low versus high lake water level. To account for prediction uncertainty, we utilized an ensemble of two 1D hydrodynamic-biogeochemical lake models along with 500 realizations of meteorological conditions. Results suggest that supplying desalinated water for local use, thus releasing more natural waters through the Jordan River, increasing nutrient flow, may reduce cyanobacteria blooms, mitigating climate change effects. However, these results are accompanied by considerable uncertainty.

20.
Elife ; 122024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864737

ABSTRACT

Filamentous cyanobacteria are one of the oldest and today still most abundant lifeforms on earth, with manifold implications in ecology and economics. Their flexible filaments, often several hundred cells long, exhibit gliding motility in contact with solid surfaces. The underlying force generating mechanism is not yet understood. Here, we demonstrate that propulsion forces and friction coefficients are strongly coupled in the gliding motility of filamentous cyanobacteria. We directly measure their bending moduli using micropipette force sensors, and quantify propulsion and friction forces by analyzing their self-buckling behavior, complemented with analytical theory and simulations. The results indicate that slime extrusion unlikely generates the gliding forces, but support adhesion-based hypotheses, similar to the better-studied single-celled myxobacteria. The critical self-buckling lengths align well with the peaks of natural length distributions, indicating the importance of self-buckling for the organization of their collective in natural and artificial settings.


Subject(s)
Cyanobacteria , Cyanobacteria/physiology , Biomechanical Phenomena , Friction , Movement
SELECTION OF CITATIONS
SEARCH DETAIL