Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 455
Filter
1.
Cell Rep ; : 114468, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39106862

ABSTRACT

Engrams, which are cellular substrates of memory traces, have been identified in various brain areas, including the amygdala. While most identified engrams are composed of excitatory, glutamatergic neurons, GABAergic inhibitory engrams have been relatively overlooked. Here, we report the identification of an inhibitory engram in the central lateral amygdala (CeL), a key area for auditory fear conditioning. This engram is primarily composed of GABAergic somatostatin-expressing (SST(+)) and, to a lesser extent, protein kinase C-δ-expressing (PKC-δ(+)) neurons. Fear memory is accompanied by a preferential enhancement of synaptic inhibition onto PKC-δ(+) neurons. Silencing this CeL GABAergic engram disinhibits the activity of targeted extra-amygdaloid areas, selectively increasing the expression of fear. Our findings define the behavioral function of an engram formed exclusively by GABAergic inhibitory neurons in the mammalian brain.

2.
J Psychiatr Res ; 178: 59-65, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39121708

ABSTRACT

Ventral tegmental area (VTA) dopamine (DA) neurons have been found to substantially associate with post-traumatic stress disorder (PTSD) pathology, however, whether and how these DA neurons affect fear memory management in PTSD individuals remains largely unknown. In this study, we utilized auditory conditioned foot-shock to evaluate the fear memory retrieval and retention characteristics in a single prolonged stress-induced PTSD rat model. We employed chemogenetic technology to specifically activate VTA DA neurons to examine the freezing behaviors responding to the conditioned stimuli. In vivo extracellular electrophysiological analyses were used to identify VTA DA neuronal firing alterations due to the chemogenetic activation. The results demonstrated that PTSD model rats showed comparable fear memory retrieval (Day 2 after the conditioned foot-shock), but significant enhancements in fear memory retention (Day 8 after the conditioned foot-shock), compared to normal control rats. Chemogenetic activation of VTA DA neurons markedly diminished the retention of fear memory in PTSD model rats, which appeared concomitantly with increases in the firing activities of the DA neurons. These findings revealed that PTSD induced the persistence of fear memory, which could be attenuated by activation of VTA DA neurons. It is presumed that VTA dopaminergic signals may serve as a prospective option for PTSD treatment.

3.
Elife ; 122024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023519

ABSTRACT

The dominant models of learning and memory, such as Hebbian plasticity, propose that experiences are transformed into memories through input-specific synaptic plasticity at the time of learning. However, synaptic plasticity is neither strictly input-specific nor restricted to the time of its induction. The impact of such forms of non-Hebbian plasticity on memory has been difficult to test, and hence poorly understood. Here, we demonstrate that synaptic manipulations can deviate from the Hebbian model of learning, yet produce a lasting memory. First, we established a weak associative conditioning protocol in mice, where optogenetic stimulation of sensory thalamic input to the amygdala was paired with a footshock, but no detectable memory was formed. However, when the same input was potentiated minutes before or after, or even 24 hr later, the associative experience was converted into a lasting memory. Importantly, potentiating an independent input to the amygdala minutes but not 24 hr after the pairing produced a lasting memory. Thus, our findings suggest that the process of transformation of a transient experience into a memory is neither restricted to the time of the experience nor to the synapses triggered by it; instead, it can be influenced by past and future events.


Subject(s)
Amygdala , Memory , Neuronal Plasticity , Optogenetics , Animals , Neuronal Plasticity/physiology , Mice , Memory/physiology , Amygdala/physiology , Male , Mice, Inbred C57BL , Thalamus/physiology
4.
IBRO Neurosci Rep ; 16: 168-181, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39007086

ABSTRACT

Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity. Behavioral analysis indicated anxiolytic behavioral responses in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors at timepoints when newborn neurons are predicted to integrate into the mature hippocampal network. Furthermore, we noted an enhanced fear memory extinction on a contextual fear memory learning task in transgenic mice subjected to chemogenetic activation of adult hippocampal progenitors. Our findings indicate that hM3Dq-DREAD-mediated chemogenetic activation of adult hippocampal progenitors impacts distinct aspects of hippocampal neurogenesis, associated with the regulation of anxiety-like behavior and fear memory extinction.

5.
Neurosci Bull ; 40(8): 1037-1052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39014176

ABSTRACT

Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.


Subject(s)
Disease Models, Animal , Fluoxetine , Mice, Inbred C57BL , Myelin Sheath , Stress Disorders, Post-Traumatic , Animals , Stress Disorders, Post-Traumatic/drug therapy , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Male , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Parietal Lobe/drug effects , Wnt Signaling Pathway/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology
6.
Neurobiol Learn Mem ; 213: 107960, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004160

ABSTRACT

Labilization-reconsolidation, which relies on retrieval, has been considered an opportunity to attenuate the negative aspects of traumatic memories. A therapeutic strategy based on reconsolidation blockade is deemed more effective than current therapies relying on memory extinction. Nevertheless, extremely stressful memories frequently prove resistant to this process. Here, after inducing robust fear memory in mice through strong fear conditioning, we examined the possibility of rendering it susceptible to pharmacological modulation based on the degree of generalized fear (GF). To achieve this, we established an ordered gradient of GF, determined by the perceptual similarity between the associated context (CA) and non-associated contexts (CB, CC, CD, and CE) to the aversive event. We observed that as the exposure context became less similar to CA, the defensive pattern shifted from passive to active behaviors in both male and female mice. Subsequently, in conditioned animals, we administered propranolol after exposure to the different contexts (CA, CB, CC, CD or CE). In males, propranolol treatment resulted in reduced freezing time and enhanced risk assessment behaviors when administered following exposure to CA or CB, but not after CC, CD, or CE, compared to the control group. In females, a similar change in behavioral pattern was observed with propranolol administered after exposure to CC, but not after the other contexts. These results highlight the possibility of indirectly manipulating a robust contextual fear memory by controlling the level of generalization during recall. Additionally, it was demonstrated that the effect of propranolol on reconsolidation would not lead to a reduction in fear memory per se, but rather to its reorganization resulting in greater behavioral flexibility (from passive to active behaviors). Finally, from a clinical viewpoint, this would be of considerable relevance since following this strategy could make the treatment of psychiatric disorders associated with traumatic memory formation more effective and less stressful.


Subject(s)
Conditioning, Classical , Fear , Propranolol , Fear/drug effects , Fear/physiology , Animals , Male , Propranolol/pharmacology , Female , Mice , Conditioning, Classical/drug effects , Memory Consolidation/drug effects , Memory Consolidation/physiology , Mice, Inbred C57BL , Memory/drug effects , Memory/physiology , Generalization, Psychological/drug effects , Generalization, Psychological/physiology , Extinction, Psychological/drug effects
7.
Article in English | MEDLINE | ID: mdl-38940908

ABSTRACT

RATIONALE: Since the precise mechanisms of posttraumatic stress disorder (PTSD) remain unknown, effective treatment interventions have not yet been established. Impaired extinction of fear memory (EFM) is one of the core symptoms of PTSD and is associated with stress-induced epigenetic change in gene expression. OBJECTIVES: In this study, we examined whether the involvement of histone H3 lysine 9 dimethylation (H3K9me2) in EFM is mediated through brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and whether BIX01294, a selective G9a and GLP histone methyltransferase inhibitor, could be treatment for impaired EFM in an animal model of PTSD. METHODS: The single prolonged stress (SPS) paradigm was used to model PTSD. We measured BDNF mRNA levels by RT-PCR, and H3K9me2 levels in the BDNF gene promoters by chromatin immunoprecipitation-qPCR. After undergoing contextual fear conditioning and hippocampal injection of BIX01294, male rats were subjected to extinction training and extinction testing and their freezing times and BDNF mRNA levels were measured. RESULTS: Compared to sham rats, SPS rats showed decreased BDNF mRNA levels 2 h after extinction training, no significant changes in levels of global H3K9me2 prior to extinction training, and increased levels of H3K9me2 in BDNF gene promoter IV, but not in BDNF gene promoter I. Administration of BIX01294 ameliorated the decrease in BDNF mRNA levels 2 h after extinction training and subsequently alleviated impaired EFM in extinction tests in SPS rats. CONCLUSION: We conclude that reduced hippocampal levels of BDNF mRNA due to increase in H3K9me2 levels may play a role in PTSD-associated EFM impairment, and BIX01294 could be a PTSD treatment option.

8.
Front Psychiatry ; 15: 1387507, 2024.
Article in English | MEDLINE | ID: mdl-38707622

ABSTRACT

Background: The claustrum (CLA), a subcortical area between the insular cortex and striatum, innervates almost all cortical regions of the mammalian brain. There is growing evidence that CLA participates in many brain functions, including memory, cognition, and stress response. It is proposed that dysfunction or malfunction of the CLA might be the pathology of some brain diseases, including stress-induced depression and anxiety. However, the role of the CLA in fear memory and anxiety disorders remains largely understudied. Methods: We evaluated the influences of neurotoxic lesions of the CLA using auditory-cued fear memory and anxiety-like behaviors in rats. Results: We found that lesions of anterior CLA (aCLA) but not posterior CLA (pCLA) before fear conditioning attenuated fear retrieval, facilitated extinction, and reduced freezing levels during the extinction retention test. Post-learning lesions of aCLA but not pCLA facilitated fear extinction and attenuated freezing behavior during the extinction retention test. Lesions of aCLA or pCLA did not affect anxiety-like behaviors evaluated by the open field test and elevated plus-maze test. Conclusion: These data suggested that aCLA but not pCLA was involved in fear memory and extinction. Future studies are needed to further investigate the anatomical and functional connections of aCLA subareas that are involved in fear conditioning, which will deepen our understanding of CLA functions.

9.
Curr Biol ; 34(12): 2657-2671.e7, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38810639

ABSTRACT

Animals need to detect threats, initiate defensive responses, and, in parallel, remember where the threat occurred to avoid the possibility of re-encountering it. By probing animals capable of detecting and avoiding a shock-related threatening location, we were able to reveal a septo-hippocampal-hypothalamic circuit that is also engaged in ethological threats, including predatory and social threats. Photometry analysis focusing on the dorsal premammillary nucleus (PMd), a critical interface of this circuit, showed that in freely tested animals, the nucleus appears ideal to work as a threat detector to sense dynamic changes under threatening conditions as the animal approaches and avoids the threatening source. We also found that PMd chemogenetic silencing impaired defensive responses by causing a failure of threat detection rather than a direct influence on any behavioral responses and, at the same time, updated fear memory to a low-threat condition. Optogenetic silencing of the main PMd targets, namely the periaqueductal gray and anterior medial thalamus, showed that the projection to the periaqueductal gray influences both defensive responses and, to a lesser degree, contextual memory, whereas the projection to the anterior medial thalamus has a stronger influence on memory processes. Our results are important for understanding how animals deal with the threat imminence continuum, revealing a circuit that is engaged in threat detection and that, at the same time, serves to update the memory process to accommodate changes under threatening conditions.


Subject(s)
Fear , Hippocampus , Memory , Animals , Fear/physiology , Memory/physiology , Male , Hippocampus/physiology , Neural Pathways/physiology , Hypothalamus/physiology , Optogenetics , Rats/physiology
10.
Front Mol Neurosci ; 17: 1386924, 2024.
Article in English | MEDLINE | ID: mdl-38736483

ABSTRACT

The Slitrk family consists of six synaptic adhesion molecules, some of which are associated with neuropsychiatric disorders. In this study, we aimed to investigate the physiological role of Slitrk4 by analyzing Slitrk4 knockout (KO) mice. The Slitrk4 protein was widely detected in the brain and was abundant in the olfactory bulb and amygdala. In a systematic behavioral analysis, male Slitrk4 KO mice exhibited an enhanced fear memory acquisition in a cued test for classical fear conditioning, and social behavior deficits in reciprocal social interaction tests. In an electrophysiological analysis using amygdala slices, Slitrk4 KO mice showed enhanced long-term potentiation in the thalamo-amygdala afferents and reduced feedback inhibition. In the molecular marker analysis of Slitrk4 KO brains, the number of calretinin (CR)-positive interneurons was decreased in the anterior part of the lateral amygdala nuclei at the adult stage. In in vitro experiments for neuronal differentiation, Slitrk4-deficient embryonic stem cells were defective in inducing GABAergic interneurons with an altered response to sonic hedgehog signaling activation that was involved in the generation of GABAergic interneuron subsets. These results indicate that Slitrk4 function is related to the development of inhibitory neurons in the fear memory circuit and would contribute to a better understanding of osttraumatic stress disorder, in which an altered expression of Slitrk4 has been reported.

11.
Cogn Emot ; : 1-17, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625561

ABSTRACT

Despite the salient experience of encoding threatening events, these memories are prone to distortions and often non-veridical from encoding to recall. Further, threat has been shown to preferentially disrupt the binding of event details and enhance goal-relevant information. While extensive work has characterised distinctive features of emotional memory, research has not fully explored the influence threat has on temporal memory, a process putatively supported by the binding of event details into a temporal context. Two primary competing hypotheses have been proposed; that threat can impair or enhance temporal memory. We analysed two datasets to assess temporal memory for an in-person haunted house experience. In study 1, we examined the temporal structure of memory by characterising memory contiguity in free recall as a function of individual levels of heart rate as a proxy of threat. In study 2, we replicated marginal findings of threat-related increases in memory contiguity found in study 1. We extended these findings by showing threat-related increases in recency discriminations, an explicit test of temporal memory. Together, these findings demonstrate that threat enhances temporal memory regarding free recall structure and during explicit memory judgments.

12.
Int J Neurosci ; : 1-12, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38598305

ABSTRACT

INTRODUCTION: Social inequality conditions induce aversion and affect brain functions and mood. This study investigated the effects of chronic social equality and inequality (CSE and CSI, respectively) conditions on passive avoidance memory and post-traumatic stress disorder (PTSD)-like behaviors in rats under chronic empathic stress. METHODS: Rats were divided into different groups, including control, sham-observer, sham-demonstrator, observer, demonstrator, and co-demonstrator groups. Chronic stress (2 h/day) was administered to all stressed groups for 21 days. Fear learning, fear memory, memory consolidation, locomotor activity, and PTSD-like behaviors were evaluated using the passive avoidance test. Apart from the hippocampal weight, the correlations of memory and right hippocampal weight with serum corticosterone (CORT) levels were separately assessed for all experimental groups. RESULTS: Latency was significantly higher in the demonstrator and sham-demonstrator groups compared to the control group. It was decreased significantly in other groups compared to the control group. Latency was also decreased in the observer and co-demonstrator groups compared to the demonstrator group. Moreover, the right hippocampal weight was significantly decreased in the demonstrator and sham-demonstrator groups compared to the control group. Pearson's correlation of memory and hippocampal weight with serum CORT levels supported the present findings. CONCLUSION: Maladaptive fear responses occurred in demonstrators and sham-demonstrators. Also, extremely high levels of psychological stress, especially under CSI conditions (causing abnormal fear learning) led to heightened fear memory and PTSD-like behaviors. Right hippocampal atrophy confirmed the potential role of CSI conditions in promoting PTSD-like behaviors. Compared to inequality conditions, the abnormal fear memory was reduced under equality conditions.

13.
Behav Brain Res ; 468: 115017, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38679145

ABSTRACT

Growing evidence indicates a critical role of astrocytes in learning and memory. However, little is known about the role of basolateral amygdala complex (BLA-C) astrocytes in contextual fear conditioning (CFC), a paradigm relevant to understand and generate treatments for fear- and anxiety-related disorders. To get insights on the involvement of BLA-C astrocytes in fear memory, fluorocitrate (FLC), a reversible astroglial metabolic inhibitor, was applied at critical moments of the memory processing in order to target the acquisition, consolidation, retrieval and reconsolidation process of the fear memory. Adult Wistar male rats were bilaterally cannulated in BLA-C. Ten days later they were infused with different doses of FLC (0.5 or 1 nmol/0.5 µl) or saline before or after CFC and before or after retrieval. FLC impaired fear memory expression when administered before and shortly after CFC, but not one hour later. Infusion of FLC prior and after retrieval did not affect the memory. Our findings suggest that BLA-C astrocytes are critically involved in the acquisition/early consolidation of fear memory but not in the retrieval and reconsolidation. Furthermore, the extinction process was presumably not affected (considering that peri-retrieval administration could also affect this process).


Subject(s)
Astrocytes , Basolateral Nuclear Complex , Fear , Memory , Rats, Wistar , Animals , Fear/physiology , Fear/drug effects , Astrocytes/drug effects , Astrocytes/physiology , Male , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Rats , Memory/physiology , Memory/drug effects , Citrates/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Memory Consolidation/physiology , Memory Consolidation/drug effects , Amygdala/drug effects , Amygdala/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology
14.
Neuropharmacology ; 252: 109960, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631563

ABSTRACT

Small conductance Ca2+-activated K+ (SK) channels, expressed throughout the CNS, are comprised of SK1, SK2 and SK3 subunits, assembled as homotetrameric or heterotetrameric proteins. SK channels expressed somatically modulate the excitability of neurons by mediating the medium component of the afterhyperpolarization. Synaptic SK channels shape excitatory postsynaptic potentials and synaptic plasticity. Such SK-mediated effects on neuronal excitability and activity-dependent synaptic strength likely underlie the modulatory influence of SK channels on memory encoding. Converging evidence indicates that several forms of long-term memory are facilitated by administration of the SK channel blocker, apamin, and impaired by administration of the pan-SK channel activator, 1-EBIO, or by overexpression of the SK2 subunit. The selective knockdown of dendritic SK2 subunits facilitates memory to a similar extent as that observed after systemic apamin. SK1 subunits co-assemble with SK2; yet the functional significance of SK1 has not been clearly defined. Here, we examined the effects of GW542573X, a drug that activates SK1 containing SK channels, as well as SK2/3, on several forms of long-term memory in male C57BL/6J mice. Our results indicate that pre-training, but not post-training, systemic GW542573X impaired object memory and fear memory in mice tested 24 h after training. Pre-training direct bilateral infusion of GW542573X into the CA1 of hippocampus impaired object memory encoding. These data suggest that systemic GW542573X impairs long-term memory. These results add to growing evidence that SK2 subunit-, and SK1 subunit-, containing SK channels can regulate behaviorally triggered synaptic plasticity necessary for encoding hippocampal-dependent memory.


Subject(s)
Hippocampus , Mice, Inbred C57BL , Pyrazoles , Small-Conductance Calcium-Activated Potassium Channels , Animals , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Thiazoles/pharmacology , Indoles/pharmacology , Pyrimidines/pharmacology , Memory/drug effects , Memory/physiology , Fear/drug effects , Fear/physiology , Memory, Long-Term/drug effects , Memory, Long-Term/physiology
15.
Cell Chem Biol ; 31(7): 1336-1348.e7, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38582083

ABSTRACT

Phospholipase C (PLC) is a key enzyme that regulates physiological processes via lipid and calcium signaling. Despite advances in protein engineering, no tools are available for direct PLC control. Here, we developed a novel optogenetic tool, light-controlled PLCß (opto-PLCß). Opto-PLCß uses a light-induced dimer module, which directs an engineered PLC to the plasma membrane in a light-dependent manner. Our design includes an autoinhibitory capacity, ensuring stringent control over PLC activity. Opto-PLCß triggers reversible calcium responses and lipid dynamics in a restricted region, allowing precise spatiotemporal control of PLC signaling. Using our system, we discovered that phospholipase D-mediated phosphatidic acid contributes to diacylglycerol clearance on the plasma membrane. Moreover, we extended its applicability in vivo, demonstrating that opto-PLCß can enhance amygdala synaptic plasticity and associative fear learning in mice. Thus, opto-PLCß offers precise spatiotemporal control, enabling comprehensive investigation of PLC-mediated signaling pathways, lipid dynamics, and their physiological consequences in vivo.


Subject(s)
Light , Neuronal Plasticity , Animals , Mice , Humans , Phospholipase C beta/metabolism , Mice, Inbred C57BL , Optogenetics , Type C Phospholipases/metabolism , Cell Membrane/metabolism , Male , HEK293 Cells , Diglycerides/metabolism , Diglycerides/chemistry , Calcium/metabolism , Phosphatidic Acids/metabolism , Phosphatidic Acids/chemistry
16.
Cell Rep ; 43(4): 114097, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613783

ABSTRACT

The rodent medial prefrontal cortex (mPFC) is functionally organized across the dorsoventral axis, where dorsal and ventral subregions promote and suppress fear, respectively. As the ventral-most subregion, the dorsal peduncular cortex (DP) is hypothesized to function in fear suppression. However, this role has not been explicitly tested. Here, we demonstrate that the DP paradoxically functions as a fear-encoding brain region and plays a minimal role in fear suppression. By using multimodal analyses, we demonstrate that DP neurons exhibit fear-learning-related plasticity and acquire cue-associated activity across learning and memory retrieval and that DP neurons activated by fear memory acquisition are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of DP fear-related neural ensembles drive the promotion and suppression of freezing, respectively. Overall, our results suggest that the DP plays a role in fear memory encoding. Moreover, our findings redefine our understanding of the functional organization of the rodent mPFC.


Subject(s)
Fear , Memory , Prefrontal Cortex , Animals , Fear/physiology , Memory/physiology , Mice , Prefrontal Cortex/physiology , Male , Mice, Inbred C57BL , Neurons/physiology , Optogenetics
17.
J Affect Disord ; 354: 26-35, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452938

ABSTRACT

BACKGROUND: The retrieval-extinction paradigm based on memory reconsolidation can prevent fear memory recurrence more effectively than the extinction paradigm. High-intensity fear memories tend to resist reconsolidation. Novelty-retrieval-extinction can promote the reconsolidation of fear memory lacking neuroplasticity in rodents; however, whether it could effectively promote high-intensity fear memory reconsolidation in humans remains unclear. METHODS: Using 120 human participants, we implemented the use of the environment (novel vs. familiar) with the help of virtual reality technology. Novelty environment exploration was combined with retrieval-extinction in fear memory of two intensity levels (normal vs. high) to examine whether novelty facilitates the reconsolidation of high-intensity fear memory and prevents recurrence. Skin conductance responses were used to clarify novelty-retrieval-extinction effects at the behavioral level across three experiments. RESULTS: Retrieval-extinction could prevent the reinstatement of normal-intensity fear memory; however, for high-intensity fear memory, only the novelty-retrieval-extinction could prevent recurrence; we further validated that novelty-retrieval-extinction may be effective only when the environment is novel. LIMITATIONS: Although the high-intensity fear memory is higher than normal-intensity in this study, it may be insufficient relative to fear experienced in real-world contexts or by individuals with mental disorders. CONCLUSIONS: To some extent, these findings indicate that the novelty-retrieval-extinction paradigm could prevent the recurrence of high-intensity fear memory, and we infer that novelty of environment may play an important role in novelty-retrieval-extinction paradigm. The results of this study have positive implications for the existing retrieval extinction paradigm and the clinical treatment of phobia.


Subject(s)
Extinction, Psychological , Phobic Disorders , Humans , Extinction, Psychological/physiology , Fear/physiology
18.
Mol Brain ; 17(1): 11, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389098

ABSTRACT

Adenylyl cyclase 1 (AC1) is a selective subtype of ACs, which is selectively expressed in neurons. The activation of AC1 is activity-dependent, and AC1 plays an important role in cortical excitation that contributes to chronic pain and related emotional disorders. Previous studies have reported that human-used NB001 (hNB001, a selective AC1 inhibitor) produced analgesic effects in different animal models of chronic pain. However, the potential effects of hNB001 on learning and memory have been less investigated. In the present study, we found that hNB001 affected neither the induction nor the expression of trace fear, but selectively enhanced the relearning ability during the extinction in aged mice. By contrast, the same application of hNB001 did not affect recent, remote auditory fear memory, or remote fear extinction in either adult or aged mice. Furthermore, a single or consecutive 30-day oral administration of hNB001 did not affect acute nociceptive response, motor function, or anxiety-like behavior in either adult or aged mice. Our results are consistent with previous findings that inhibition of AC1 did not affect general sensory, emotional, and motor functions in adult mice, and provide strong evidence that inhibiting the activity of AC1 may be beneficial for certain forms of learning and memory in aged mice.


Subject(s)
Chronic Pain , Fear , Humans , Mice , Animals , Fear/physiology , Extinction, Psychological , Adenylyl Cyclases/metabolism , Neurons/metabolism
19.
Front Behav Neurosci ; 18: 1352797, 2024.
Article in English | MEDLINE | ID: mdl-38370858

ABSTRACT

The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.

20.
Psychopharmacology (Berl) ; 241(5): 1065-1077, 2024 May.
Article in English | MEDLINE | ID: mdl-38334789

ABSTRACT

RATIONALE:  Previous work identified an attenuating effect of the matrix metalloproteinase (MMP) inhibitor doxycycline on fear memory consolidation. This may present a new mechanistic approach for the prevention of trauma-related disorders. However, so far, this has only been unambiguously demonstrated in a cued delay fear conditioning paradigm, in which a simple geometric cue predicted a temporally overlapping aversive outcome. This form of learning is mainly amygdala dependent. Psychological trauma often involves the encoding of contextual cues, which putatively necessitates partly different neural circuits including the hippocampus. The role of MMP signalling in the underlying neural pathways in humans is unknown. METHODS: Here, we investigated the effect of doxycycline on configural fear conditioning in a double-blind placebo-controlled randomised trial with 100 (50 females) healthy human participants. RESULTS: Our results show that participants successfully learned and retained, after 1 week, the context-shock association in both groups. We find no group difference in fear memory retention in either of our pre-registered outcome measures, startle eye-blink responses and pupil dilation. Contrary to expectations, we identified elevated fear-potentiated startle in the doxycycline group early in the recall test, compared to the placebo group. CONCLUSION: Our results suggest that doxycycline does not substantially attenuate contextual fear memory. This might limit its potential for clinical application.


Subject(s)
Doxycycline , Memory , Female , Humans , Cues , Doxycycline/pharmacology , Doxycycline/metabolism , Fear/physiology , Hippocampus , Learning/physiology , Memory/physiology , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL