Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72.906
Filter
Add more filters








Publication year range
1.
Front Pharmacol ; 15: 1369659, 2024.
Article in English | MEDLINE | ID: mdl-39086396

ABSTRACT

COVID-19 is currently considered the ninth-deadliest pandemic, spreading through direct or indirect contact with infected individuals. It has imposed a consistent strain on both the financial and healthcare resources of many countries. To address this challenge, there is a pressing need for the development of new potential therapeutic agents for the treatment of this disease. To identify potential antiviral agents as novel dual inhibitors of SARS-CoV-2, we retrieved 404 alkaloids from 12 selected medicinal antiviral plants and virtually screened them against the renowned catalytic sites and favorable interacting residues of two essential proteins of SARS-CoV-2, namely, the main protease and spike glycoprotein. Based on docking scores, 12 metabolites with dual inhibitory potential were subjected to drug-likeness, bioactivity scores, and drug-like ability analyses. These analyses included the ligand-receptor stability and interactions at the potential active sites of target proteins, which were analyzed and confirmed through molecular dynamic simulations of the three lead metabolites. We also conducted a detailed binding free energy analysis of pivotal SARS-CoV-2 protein inhibitors using molecular mechanics techniques to reveal their interaction dynamics and stability. Overall, our results demonstrated that 12 alkaloids, namely, adouetine Y, evodiamide C, ergosine, hayatinine, (+)-homoaromoline, isatithioetherin C, N,alpha-L-rhamnopyranosyl vincosamide, pelosine, reserpine, toddalidimerine, toddayanis, and zanthocadinanine, are shortlisted as metabolites based on their interactions with target proteins. All 12 lead metabolites exhibited a higher unbound fraction and therefore greater distribution compared with the standards. Particularly, adouetine Y demonstrated high docking scores but exhibited a nonspontaneous binding profile. In contrast, ergosine and evodiamide C showed favorable binding interactions and superior stability in molecular dynamics simulations. Ergosine demonstrated exceptional performance in several key pharmaceutical metrics. Pharmacokinetic evaluations revealed that ergosine exhibited pronounced bioactivity, good absorption, and optimal bioavailability. Additionally, it was predicted not to cause skin sensitivity and was found to be non-hepatotoxic. Importantly, ergosine and evodiamide C emerged as superior drug candidates for dual inhibition of SARS-CoV-2 due to their strong binding affinity and drug-like ability, comparable to known inhibitors like N3 and molnupiravir. This study is limited by its in silico nature and demands the need for future in vitro and in vivo studies to confirm these findings.

2.
Cureus ; 16(7): e63593, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087175

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to substantial morbidity and mortality worldwide. Hematological abnormalities are common in COVID-19 patients and play a significant role in disease pathogenesis and prognosis. OBJECTIVE: This study aimed to longitudinally monitor hematological parameters in COVID-19 patients and investigate their predictive value for disease severity and prognosis. METHODS: A prospective longitudinal design was employed to enroll 121 adult patients diagnosed with COVID-19 based on positive SARS-CoV-2 reverse transcription-polymerase chain reaction (RT-PCR) test results. Baseline demographic and clinical data were collected, and hematological parameters, including complete blood count (CBC) indices, inflammatory markers, and coagulation profiles, were measured at predefined time points during hospitalization or outpatient visits. Follow-up assessments were conducted longitudinally to monitor the disease progression and clinical outcomes. RESULTS: This study revealed dynamic changes in hematological parameters over the course of COVID-19. Hemoglobin levels showed a decrease from baseline (mean ± SD: 12.5 ± 1.8 g/dL) to the peak of illness (10.2 ± 2.0 g/dL), indicating the development of anemia during the acute phase of infection. White blood cell counts demonstrated an initial increase (8.9 ± 3.2 × 10^9/L) followed by a decline (5.4 ± 1.9 × 10^9/L) as the disease progressed, suggesting an early inflammatory response followed by immune suppression. The platelet counts fluctuated, with a decrease observed during the acute phase (190 ± 50 × 10^9/L) and subsequent recovery during convalescence (240 ± 60 × 10^9/L). Inflammatory markers, such as C-reactive protein and interleukin-6, were elevated, peaking at 120 and 150 pg/mL, respectively, indicating systemic inflammation. Coagulation profiles showed abnormalities suggestive of COVID-19-associated coagulopathy, including elevated D-dimer levels (mean ± SD: 3.5 ± 1.2 µg/mL) and prolonged prothrombin time (15.8 ± 2.5 seconds). Longitudinal analysis of hematological parameters revealed associations between disease severity and clinical outcomes, with certain abnormalities correlating with an increased risk of complications and a poor prognosis. CONCLUSION: This study highlights the importance of monitoring hematological parameters in COVID-19 patients for risk stratification, prognostication, and guiding therapeutic interventions.

3.
Eur J Neurol ; : e16408, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088330

ABSTRACT

BACKGROUND AND PURPOSE: In October 2020, the European Academy of Neurology (EAN) consensus statement for management of patients with neurological diseases during the coronavirus disease 2019 (COVID-19) pandemic was published. Due to important changes and developments that have happened since then, the need has arisen to critically reassess the original recommendations and address new challenges. METHODS: In step 1, the original items were critically reviewed by the EAN COVID-19 Task Force. In addition, new recommendations were defined. In step 2, an online survey with the recommendations forged in step 1 was sent to the Managing Groups of all Scientific and Coordinating Panels of EAN. In step 3, the final set of recommendations was made. RESULTS: In step 1, out of the original 36 recommendations, 18 were judged still relevant. They were edited to reflect the advances in knowledge and practice. In addition, 21 new recommendations were formulated to address the new knowledge and challenges. In step 2, out of the 39 recommendations sent for the survey, nine were approved as they were, whilst suggestions for improvement were given for the rest. In step 3, the recommendations were further edited, and some new items were formed to accommodate the participants' suggestions, resulting in a final set of 41 recommendations. CONCLUSION: This revision of the 2020 EAN Statement provides updated comprehensive and structured guidance on good clinical practice in people with neurological disease faced with SARS-CoV-2 infection. It now covers the issues from the more recent domains of COVID-19-related care, vaccine complications and post-COVID-19 conditions.

4.
Vaccine ; 42(21): 126156, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39088986

ABSTRACT

BACKGROUND: Despite the emergence of SARS-CoV-2 variants and waning immunity after initial vaccination, data on antibody kinetics following booster doses, particularly those adapted to Omicron subvariants like XBB.1.5, remain limited. This study assesses the kinetics of anti-spike protein receptor-binding domain (S-RBD) IgG antibody titers post-booster vaccination in a Japanese population during the Omicron variant epidemic. METHODS: A prospective cohort study was conducted in Bizen City, Japan, from November 2023 to January 2024. Participants included residents and workers aged ≥18 years, with at least three COVID-19 vaccinations. Antibody levels were measured from venous blood samples. The study analyzed 424 participants and 821 antibody measurements, adjusting for variables such as age, sex, underlying conditions, and prior infection status. Mixed-effects models were employed to describe the kinetics of log-transformed S-RBD antibody titers. RESULTS: The study found that S-RBD antibody titers declined over time but increased with the number of booster vaccinations, particularly those adapted to Omicron and its subvariant XBB.1.5 (Pfizer-BioNTech Omicron-compatible: 0.156, 95%CI -0.032 to 0.344; Pfizer-BioNTech XBB-compatible: 0.226; 95%CI -0.051 to 0.504; Moderna Omicron-compatible: 0.279, 95%CI 0.012 to 0.546; and Moderna XBB-compatible: 0.338, 95%CI -0.052 to 0.728). Previously infected individuals maintained higher antibody titers, which declined more gradually compared to uninfected individuals (coefficient for interaction with time 0.006; 95%CI 0.001 to 0.011). Sensitivity analyses using Generalized Estimating Equations and interval-censored random intercept model confirmed the robustness of these findings. CONCLUSIONS: The study provides specific data on antibody kinetics post-booster vaccination, including the XBB.1.5-adapted vaccine, in a highly vaccinated Japanese population. The results highlight the importance of considering individual demographics and prior infection history in optimizing vaccination strategies.

5.
Sci Total Environ ; : 175138, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089378

ABSTRACT

In regions without adequate centralized wastewater treatment plants, sample collection from rivers and sewers can be an alternative sampling strategy for wastewater surveillance. This study aimed to assess the feasibility of alternative sampling strategies by testing samples collected from rivers (n = 246) and sewers (n = 244) in the Kathmandu Valley between March 2021 and February 2022. All samples were concentrated using the skimmed-milk flocculation method and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was quantified using the nucleocapsid (N) and envelope (E) genes qPCR assays. Of the total, 75 % (371/490) of the samples tested positive using at least one qPCR assay, with concentrations ranging from 3.0 to 8.3 log10 gene copies/L. No significant correlation between concentrations of SARS-CoV-2 from both sewers and river with the number of confirmed coronavirus disease 2019 (COVID-19) cases in the Kathmandu valley was observed (p > 0.05). Despite the high concentration of SARS-CoV-2 in rivers and sewers, we hypothesize this finding to be a result of inaccurate number of clinical cases possibly due to inadequate clinical testing. This longitudinal study further supports the statement to consider sampling strategies from sewers and rivers for WBS in Nepal and other low and middle-income countries.

6.
Am J Med ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089436

ABSTRACT

Alongside the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, the number of patients with persistent symptoms following acute infection with SARS-CoV-2 is of concern. It is estimated that at least 65 million people worldwide meet criteria for what the World Health Organization (WHO) defines as "post-COVID-19 condition" - a multisystem disease comprising a wide range of symptoms. Effective treatments are lacking. In the present review, we aim to summarize the current evidence for the effectiveness of non-invasive or minimally invasive brain stimulation techniques in reducing symptoms of post-COVID-19. A total of nineteen studies were identified, one using transcutaneous vagus nerve stimulation (tVNS), another using transorbital alternating current stimulation (toACS), six studies on transcranial magnetic stimulation (TMS) and eleven studies on transcranial direct current stimulation (tDCS) for the treatment of post-COVID-19 symptoms. Existing studies report first promising results, illustrating improvement in clinical outcome parameters. Yet, the mechanistic understanding of post-COVID-19 and how brain stimulation techniques may be benefitial are limited. Directions for future research in the field are discussed.

7.
Cell Mol Gastroenterol Hepatol ; : 101383, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089626

ABSTRACT

BACKGROUND AND AIMS: Diarrhea occurs in up to 50% of cases of COVID-19. Nonetheless, the pathophysiologic mechanism(s) have not been determined. METHODS: This was examined using normal human enteroid monolayers exposed apically to live SARS-CoV-2 or non-replicating virus like particles (VLPs) bearing the four SARS-CoV-2 structural proteins or irradiated virus, all of which bound and entered enterocytes. RESULTS: Live virus and VLPs increased secretion of multiple cytokines and reduced mRNAs of ACE2, NHE3 and DRA. IL-6 plus IL-8 alone reduced NHE3 mRNA and protein and DRA mRNA. Neither VLPs nor IL-6 plus IL-8 alone altered Cl- secretion, but together they caused Cl- secretion, which was Ca2+ dependent, CFTR independent, blocked partially by a specific TMEM16 A inhibitor, and entirely by a general TMEM16 family inhibitor. VLPs and irradiated virus, but not IL-6 plus IL-8, produced Ca2+ waves that began within minutes of VLP exposure, lasted for at least 60 min, and were prevented by pretreatment with apyrase; a P2Y1 receptor antagonist; and general TMEM16 family inhibitor but NOT by the specific TMEM16A inhibitor. CONCLUSIONS: The pathophysiology of COVID-19 diarrhea appears to be a unique example of a calcium dependent inflammatory diarrhea, that is caused by direct viral effects plus the virus-induced intestinal epithelial cytokine secretion.

8.
J Virol ; : e0124024, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087765

ABSTRACT

Science is humanity's best insurance against threats from nature, but it is a fragile enterprise that must be nourished and protected. The preponderance of scientific evidence indicates a natural origin for SARS-CoV-2. Yet, the theory that SARS-CoV-2 was engineered in and escaped from a lab dominates media attention, even in the absence of strong evidence. We discuss how the resulting anti-science movement puts the research community, scientific research, and pandemic preparedness at risk.

9.
J Leukoc Biol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087951

ABSTRACT

Lipid droplets (LD) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and non-structural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LD participates in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.

10.
J Mol Histol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088116

ABSTRACT

SARS-CoV-2 infection is considered as a multi-organ disease, and several studies highlighted the relevance of the virus infection in the induction of vascular injury and tissue morphological alterations, including placenta. In this study, immunohistochemical analyses were carried out on placenta samples derived from women with COVID-19 infection at delivery (SARS-CoV-2 PCR+) or women healed from a COVID-19 infection (SARS-CoV-2 negative at delivery, SARS-CoV-2 PCR-) or women who gave birth before 2019 (Control). Angiotensin Converting Enzyme 2 (ACE2) receptor, Cluster of differentiation 147 (CD147), endothelial CD34 marker, Vascular Endothelial Growth Factor (VEGF) and total Microtubule-associated protein 1 Light Chain 3B marker (LC3B) were investigated in parallel with SPIKE protein by standard IHC. Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS) was used to examine antigen co-expression in the same specimen. SPIKE protein was detected in villi and decidua from women with ongoing infection, with no significant differences in SPIKE staining between both biopsy sites. VEGF was significantly increased in SARS-CoV-2 PCR + biopsies compared to control and SARS-CoV-2 PCR- samples, and MICSSS method showed the co-localization of SPIKE with VEGF and CD34. The induction of autophagy, as suggested by the LC3B increase in SARS-CoV-2 PCR + biopsies and the co-expression of LC3B with SPIKE protein, may explain one of the different mechanisms by which placenta may react to infection. These data could provide important information on the impact that SARS-CoV-2 may have on the placenta and mother-to-fetus transmission.

11.
Andrology ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092886

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2, the virus responsible for coronavirus disease 2019, affects multiple organs. The virus enters cells through angiotensin-converting enzyme-2 and host factors present in genital organs, leading to concern over virus shedding in semen and reproductive function. OBJECTIVES: To investigate severe acute respiratory syndrome coronavirus 2 in semen from patients with a mild infection, identify the seminal infected cells, and explore the effect of the infection on sex hormones and semen parameters. MATERIALS AND METHODS: Prospective study of 54 men with mild severe acute respiratory syndrome coronavirus 2 infection. Semen was collected at 7, 15, 30, 60, 90, 180, and 365 days after symptom onset, and severe acute respiratory syndrome coronavirus 2 RNA was measured in serum, saliva, urine, and semen. The presence of infectious severe acute respiratory syndrome coronavirus 2 in semen was assessed using Vero cell culture. Infected semen cells were identified using immunofluorescence against severe acute respiratory syndrome coronavirus 2 nucleoprotein antigen and cell markers. Semen characteristics as well as testosterone, inhibin B, luteinizing hormone, and follicle-stimulating hormone levels were determined. RESULTS: 11% of patients had at least one severe acute respiratory syndrome coronavirus 2 RNA-positive semen. One patient had viral semen shedding up to day 90 after infection onset, with replication-competent virus isolated from semen and 40% cell fraction at day 7. After sperm preparation, 90% fraction was severe acute respiratory syndrome coronavirus 2 RNA-positive at days 7 and 15. The swim-up fraction was positive only on day 7. In semen, nucleoprotein antigen was detected mainly in exfoliated epithelial cells and less frequently in Sertoli cells. Sperm count and motile sperm count were lower at day 30 than at day 7. Round cells in semen were increased during the acute phase. At days 7 and 15, sperm count and motile sperm count were lower in severe acute respiratory syndrome coronavirus 2 RNA-positive semen compared with negative semen, while semen volume and follicle-stimulating hormone levels were increased. Long-term follow-up shows no evidence of a detrimental effect on hormonal or semen characteristics. DISCUSSION AND CONCLUSION: 11% of patients with mild coronavirus disease 2019 who were not hospitalized had severe acute respiratory syndrome coronavirus 2 excretions in semen, which persisted for up to 90 days in one patient. No germ cells appeared infected by the virus, but the detection of nucleoprotein antigen-positive epithelial semen cells and Sertoli cells suggests genital tract infection. Albeit infrequent, semen may contain the replication-competent virus during the acute phase with potential risk of severe acute respiratory syndrome coronavirus 2 transmissions during sexual contact and assisted reproduction procedures. The effect of mild coronavirus disease 2019 on spermatogenesis and reproductive hormones was moderate and reversible.

12.
J Perianesth Nurs ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093233

ABSTRACT

PURPOSE: Patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) who require surgical procedures are likely to experience higher postoperative mortality and morbidity. Our objective was to evaluate the perioperative course of patients infected with SARS-COV-2 undergoing surgical procedures. The purpose of this study was to describe the characteristics, outcomes, and the effect of the presence of symptoms. DESIGN: Retrospective cohort. METHODS: We analyzed the records of patients with SARS-CoV-2 infection who underwent surgical procedures from March 2020 to March 2021. Patients with ongoing infection at the time of surgery and those who had recently recovered were included. The primary outcome measure was 30-day in-hospital mortality after surgery. Secondary outcomes were intensive care unit (ICU) admission, length of stay in ICU, postoperative length of stay, and complications. FINDINGS: Data from 102 patients were analyzed. Twenty-four patients (23.5%) died postoperatively in the hospital within 30 days. Forty-four patients required ICU admission (average stay 13 days). The median postoperative length of stay was 8 days (interquartile range, 3.75 to 19.25 days). Pulmonary, thromboembolic, and surgical complications were noted in 29 (28.4%), 14 (13.7%), and 18 (17.6%), respectively. Patients aged 41 to 60 years experienced higher rates of pulmonary and thromboembolic complications. Comparison of asymptomatic versus symptomatic patients revealed significantly higher 30-day in-hospital mortality (9 [15%] vs 15 [35.7%], P = .019), ICU admission (17 [28.3%] vs 27 [64.3%], P < .001), length of stay in ICU (3 [2 to 11.5] vs 18 [7 to 27], P = .001), postoperative length of stay (6 [3 to 10.75] vs 12 [5 to 25.25], P = .016) and pulmonary complication rates (11 [18.3%] vs 18 [42.9%], P = .008) in the symptomatic patients. CONCLUSIONS: Symptomatic SARS-COV-2 patients undergoing surgical procedures experience significantly higher 30-day in-hospital mortality, ICU admission, longer ICU and hospital stay, and pulmonary complications.

13.
Front Microbiol ; 15: 1422393, 2024.
Article in English | MEDLINE | ID: mdl-39119143

ABSTRACT

Introduction: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is a highly contagious viral disease. Cardiovascular diseases and heart failure elevate the risk of mechanical ventilation and fatal outcomes among COVID-19 patients, while COVID-19 itself increases the likelihood of adverse cardiovascular outcomes. Methods: We collected blood samples and clinical data from hospitalized cardiovascular patients with and without proven COVID-19 infection in the time period before the vaccine became available. Statistical correlation analysis and machine learning were used to evaluate and identify individual parameters that could predict the risk of needing mechanical ventilation and patient survival. Results: Our results confirmed that COVID-19 is associated with a severe outcome and identified increased levels of ferritin, fibrinogen, and platelets, as well as decreased levels of albumin, as having a negative impact on patient survival. Additionally, patients on ACE/ARB had a lower chance of dying or needing mechanical ventilation. The machine learning models revealed that ferritin, PCO2, and CRP were the most efficient combination of parameters for predicting survival, while the combination of albumin, fibrinogen, platelets, ALP, AB titer, and D-dimer was the most efficient for predicting the likelihood of requiring mechanical ventilation. Conclusion: We believe that creating an AI-based model that uses these patient parameters to predict the cardiovascular patient's risk of mortality, severe complications, and the need for mechanical ventilation would help healthcare providers with rapid triage and redistribution of medical services, with the goal of improving overall survival. The use of the most effective combination of parameters in our models could advance risk assessment and treatment planning among the general population of cardiovascular patients.

14.
Front Cell Infect Microbiol ; 14: 1383917, 2024.
Article in English | MEDLINE | ID: mdl-39119292

ABSTRACT

Introduction: Oxysterol-binding protein (OSBP) is known for its crucial role in lipid transport, facilitating cholesterol exchange between the Golgi apparatus and endoplasmic reticulum membranes. Despite its established function in cellular processes, its involvement in coronavirus replication remains unclear. Methods: In this study, we investigated the role of OSBP in coronavirus replication and explored the potential of a novel OSBP-binding compound, ZJ-1, as an antiviral agent against coronaviruses, including SARS-CoV-2. We utilized a combination of biochemical and cellular assays to elucidate the interactions between OSBP and SARS-CoV-2 non-structural proteins (Nsps) and other viral proteins. Results: Our findings demonstrate that OSBP positively regulates coronavirus replication. Moreover, treatment with ZJ-1 resulted in reduced OSBP levels and exhibited potent antiviral effects against multiple coronaviruses. Through our investigation, we identified specific interactions between OSBP and SARS-CoV-2 Nsps, particularly Nsp3, Nsp4, and Nsp6, which are involved in double-membrane vesicle formation-a crucial step in viral replication. Additionally, we observed that Nsp3 a.a.1-1363, Nsp4, and Nsp6 target vesicle-associated membrane protein (VAMP)-associated protein B (VAP-B), which anchors OSBP to the ER membrane. Interestingly, the interaction between OSBP and VAP-B is disrupted by Nsp3 a.a.1-1363 and partially impaired by Nsp6. Furthermore, we identified SARS-CoV-2 orf7a, orf7b, and orf3a as additional OSBP targets, with OSBP contributing to their stabilization. Conclusion: Our study highlights the significance of OSBP in coronavirus replication and identifies it as a promising target for the development of antiviral therapies against SARS-CoV-2 and other coronaviruses. These findings underscore the potential of OSBP-targeted interventions in combating coronavirus infections.


Subject(s)
Antiviral Agents , Receptors, Steroid , SARS-CoV-2 , Viral Nonstructural Proteins , Virus Replication , Virus Replication/drug effects , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Antiviral Agents/pharmacology , Receptors, Steroid/metabolism , Viral Nonstructural Proteins/metabolism , COVID-19/virology , COVID-19/metabolism , Chlorocebus aethiops , Vero Cells , Viral Proteins/metabolism , HEK293 Cells , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Viroporin Proteins/metabolism , Coronavirus Papain-Like Proteases/metabolism , Protein Binding
15.
Cureus ; 16(7): e64137, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39119409

ABSTRACT

Objectives This study aimed to assess the relationship between illness severity and mortality among COVID-19 patients along with the cycle threshold (Ct) value measured by viral load. Methods A cross-sectional study was conducted based on records of the emergency room at Rashid Hospital located in Dubai, United Arab Emirates. This research was carried out on all of the appropriate records of patients who were hospitalized at Rashid Hospital in Dubai between May 2020 and January 2021. Clinical and laboratory data were used as severity indicators, and in-hospital death was designated as the outcome. Results A total of 1,633 cases were included in the analysis. The percentage of deceased patients was higher in patients with a low Ct value (11.6%) than in patients with a high Ct value (6.9%) (p-value = 0.003). Logistic analysis revealed a statistically significant correlation (OR=2.046; p-value=0.002) between mortality and viral load, as measured by the Ct value. Patients with low Ct values and aberrant laboratory findings had a higher frequency of respiratory problems and required oxygen therapy, according to clinical and laboratory markers. Conclusions A correlation was found between viral load and mortality. Advanced age, history of chronic disease, and abnormal clinical and laboratory findings were all independently linked to a greater mortality rate in COVID-19 patients, indicating that they might be utilized as predictive and prognostic factors along with the viral load.

16.
Front Plant Sci ; 15: 1425759, 2024.
Article in English | MEDLINE | ID: mdl-39119497

ABSTRACT

Introduction: Currently, the development of new antiviral drugs against COVID-19 remains of significant importance. In traditional Chinese medicine, the herb Euphorbia fischeriana Steud is often used for antiviral treatment, yet its therapeutic effect against the COVID-19 has been scarcely studied. Therefore, this study focuses on the roots of E. fischeriana Steud, exploring its chemical composition, antiviral activity against COVID-19, and the underlying basis of its antiviral activity. Methods: Isolation and purification of phytochemicals from E. fischeriana Steud. The elucidation of their configurations was achieved through a comprehensive suite of 1D and 2D NMR spectroscopic analyses as well as X-ray diffraction. Performed cytopathic effect assays of SARS-CoV-2 using Vero E6 cells. Used molecular docking to screen for small molecule ligands with binding to SARS-CoV-2 RdRp. Microscale thermophoresis (MST) was used to determine the dissociation constant Kd. Results: Ultimately, nine new ent-atisane-type diterpenoid compounds were isolated from E. fischeriana Steud, named Eupfisenoids A-I (compounds 1-9). The compound of 1 was established as a C-19-degraded ent-atisane-type diterpenoid. During the evaluation of these compounds for their antiviral activity against COVID-19, compound 1 exhibited significant antiviral activity. Furthermore, with the aid of computer virtual screening and microscale thermophoresis (MST) technology, it was found that this compound could directly bind to the RNA-dependent RNA polymerase (RdRp, NSP12) of the COVID-19, a key enzyme in virus replication. This suggests that the compound inhibits virus replication by targeting RdRp. Discussion: Through this research, not only has our understanding of the antiviral components and material basis of E. fischeriana Steud been enriched, but also the potential of atisane-type diterpenoid compounds as antiviral agents against COVID-19 has been discovered. The findings mentioned above will provide valuable insights for the development of drugs against COVID-19.

17.
Drug Discov Today ; : 104126, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39097220

ABSTRACT

Coronavirus disease 2019 (COVID-19) was declared a global pandemic in March 2020, which precipitated urgent public health responses. The causative agent, SARS-CoV-2, spreads primarily via respiratory droplets, necessitating precautions to mitigate transmission risks. Biopharmaceutical industries and academic institutions worldwide swiftly redirected their research endeavors towards developing therapeutic interventions, focusing on monoclonal antibodies, antiviral agents, and immunomodulatory therapies. The evolving body of evidence surrounding these treatments has prompted successive updates and revisions from the FDA, delineating the evolving landscape of COVID-19 therapeutics. This review comprehensively examines each treatment modality within the context of their developmental trajectories and regulatory approvals throughout the pandemic. Furthermore, it elucidates their mechanisms of action and presents clinical data underpinning their utility in combating the COVID-19 crisis.

18.
Int J Bipolar Disord ; 12(1): 29, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112765

ABSTRACT

BACKGROUND: There have been case reports of renal dysfunction with lithium toxicity among severely ill COVID-19 patients. Lithium levels may be affected by comorbid conditions and the presence of infective disease states like the SARS-CoV-2 which clearly adds systemic health burden. This study aimed to review the effect SARS-CoV-2 has on serum Li levels and the possible mechanism underlying it. METHODS: Retrospective data from all clinical service encounters within the University of Michigan health system between September 2019 and September 2023 were reviewed. The study cohort included 98 patients with an average age of 45 years (62% female) who were diagnosed with any subtype of bipolar disorder, actively taking Li, and infected with SARS-CoV-2 during the study timeframe. RESULTS: There was no overarching effect of a SARS-CoV-2 infection on Li chemistry in the overall sample. Higher serum Li levels were not significantly associated with SARS-CoV-2 infection nor total comorbidity index. However, higher Li levels were observed in males while infected with SARS-CoV-2 when compared with no infection. eGFR remained unassociated with serum Li level. Receiving COVID vaccination was associated with lower serum Li levels (Coeff. = - 0.88, p = 0.048). CONCLUSIONS: Patients with a diagnosis of BD, treated with Li, and infected with SARS-CoV-2 were not likely to present with elevated Li levels unless they are male or unvaccinated. Elevated serum Li level was not associated with significant renal dysfunction in this cohort. The case reports of severe renal complications and Li toxicity may be among cases of greater overall clinical severity of COVID-19. These findings are reassuring that Li may be used in the context of a COVID-19 illness but emphasize the ongoing need for clinical vigilance.

19.
Crit Care ; 28(1): 267, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113075

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes virus-induced-senescence. There is an association between shorter telomere length (TL) in coronavirus disease 2019 (COVID-19) patients and hospitalization, severity, or even death. However, it remains unknown whether virus-induced-senescence is reversible. We aim to evaluate the dynamics of TL in COVID-19 patients 1 year after recovery from intensive care units (ICU). Longitudinal study enrolling 49 patients admitted to ICU due to COVID-19 (August 2020 to April 2021). Relative telomere length (RTL) quantification was carried out in whole blood by monochromatic multiplex real-time quantitative PCR (MMqPCR) assay at hospitalization (baseline) and 1 year after discharge (1-year visit). The association between RTL and ICU length of stay (LOS), invasive mechanical ventilation (IMV), prone position, and pulmonary fibrosis development at 1-year visit was evaluated. The median age was 60 years, 71.4% were males, median ICU-LOS was 12 days, 73.5% required IMV, and 38.8% required a prone position. Patients with longer ICU-LOS or who required IMV showed greater RTL shortening during follow-up. Patients who required pronation had a greater RTL shortening during follow-up. IMV patients who developed pulmonary fibrosis showed greater RTL reduction and shorter RTL at the 1-year visit. Patients with longer ICU-LOS and those who required IMV had a shorter RTL in peripheral blood, as observed 1 year after hospital discharge. Additionally, patients who required IMV and developed pulmonary fibrosis had greater telomere shortening, showing shorter telomeres at the 1-year visit. These patients may be more prone to develop cellular senescence and lung-related complications; therefore, closer monitoring may be needed.


Subject(s)
COVID-19 , Intensive Care Units , Length of Stay , Respiration, Artificial , Telomere Shortening , Humans , Male , COVID-19/therapy , COVID-19/complications , Female , Middle Aged , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Telomere Shortening/physiology , Length of Stay/statistics & numerical data , Aged , Longitudinal Studies , SARS-CoV-2
20.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39115959

ABSTRACT

BACKGROUND: Sequencing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA from wastewater samples has emerged as a valuable tool for detecting the presence and relative abundances of SARS-CoV-2 variants in a community. By analyzing the viral genetic material present in wastewater, researchers and public health authorities can gain early insights into the spread of virus lineages and emerging mutations. Constructing reference datasets from known SARS-CoV-2 lineages and their mutation profiles has become state-of-the-art for assigning viral lineages and their relative abundances from wastewater sequencing data. However, selecting reference sequences or mutations directly affects the predictive power. RESULTS: Here, we show the impact of a mutation- and sequence-based reference reconstruction for SARS-CoV-2 abundance estimation. We benchmark 3 datasets: (i) synthetic "spike-in"' mixtures; (ii) German wastewater samples from early 2021, mainly comprising Alpha; and (iii) samples obtained from wastewater at an international airport in Germany from the end of 2021, including first signals of Omicron. The 2 approaches differ in sublineage detection, with the marker mutation-based method, in particular, being challenged by the increasing number of mutations and lineages. However, the estimations of both approaches depend on selecting representative references and optimized parameter settings. By performing parameter escalation experiments, we demonstrate the effects of reference size and alternative allele frequency cutoffs for abundance estimation. We show how different parameter settings can lead to different results for our test datasets and illustrate the effects of virus lineage composition of wastewater samples and references. CONCLUSIONS: Our study highlights current computational challenges, focusing on the general reference design, which directly impacts abundance allocations. We illustrate advantages and disadvantages that may be relevant for further developments in the wastewater community and in the context of defining robust quality metrics.


Subject(s)
COVID-19 , Mutation , SARS-CoV-2 , Wastewater , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Wastewater/virology , Humans , COVID-19/virology , COVID-19/epidemiology , RNA, Viral/genetics , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL