Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.441
Filter
1.
J Environ Sci (China) ; 150: 422-431, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306417

ABSTRACT

In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.


Subject(s)
Biodegradation, Environmental , Soil Microbiology , Soil Pollutants , Soil , Sulfamethoxazole , Sulfamethoxazole/toxicity , Soil/chemistry , Microplastics/toxicity , Ultraviolet Rays , Biodegradable Plastics
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124968, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39153348

ABSTRACT

Ultraviolet-visible (UV-Vis) absorption spectroscopy, due to its high sensitivity and capability for real-time online monitoring, is one of the most promising tools for the rapid identification of external water in rainwater pipe networks. However, difficulties in obtaining actual samples lead to insufficient real samples, and the complex composition of wastewater can affect the accurate traceability analysis of external water in rainwater pipe networks. In this study, a new method for identifying external water in rainwater pipe networks with a small number of samples is proposed. In this method, the Generative Adversarial Network (GAN) algorithm was initially used to generate spectral data from the absorption spectra of water samples; subsequently, the multiplicative scatter correction (MSC) algorithm was applied to process the UV-Vis absorption spectra of different types of water samples; following this, the Variational Mode Decomposition (VMD) algorithm was employed to decompose and recombine the spectra after MSC; and finally, the long short-term memory (LSTM) algorithm was used to establish the identification model between the recombined spectra and the water source types, and to determine the optimal number of decomposed spectra K. The research results show that when the number of decomposed spectra K is 5, the identification accuracy for different sources of domestic sewage, surface water, and industrial wastewater is the highest, with an overall accuracy of 98.81%. Additionally, the performance of this method was validated by mixed water samples (combinations of rainwater and domestic sewage, rainwater and surface water, and rainwater and industrial wastewater). The results indicate that the accuracy of the proposed method in identifying the source of external water in rainwater reaches 98.99%, with detection time within 10 s. Therefore, the proposed method can become a potential approach for rapid identification and traceability analysis of external water in rainwater pipe networks.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124953, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39128385

ABSTRACT

Improving the ease of operation and portability of hydrogen peroxide (H2O2) detection in daily production and life holds significant application value. However, it remains a challenge to achieve rapid colorimetric detection of H2O2 and color change quantification. In this study, we achieved rapid and visual detection of H2O2 by MoOx (2 ≤ x ≤ 3) nanoparticles with rich oxygen vacancies using machine vision. As the concentration of H2O2 increases, the detection system exhibited a visible multi-color change from blue to green and then yellow and the absorption peak near 680 nm measured by the UV-visible spectrophotometer gradually decreased. With excellent sensitivity, a wide linear range of 0.1-600 µmol/L, concentrations as low as 0.1 µmol/L can be detected with good selectivity towards H2O2. The sensing mechanism of detecting H2O2 by the change of oxygen vacancies in MoOx was revealed through characterization methods such as XPS, EPR, and DFT. In addition, the Hue, Saturation, Value (HSV) visual analysis system based on MoOx was constructed to assist in the rapid, portable, and sensitive monitoring of H2O2 in practical application scenarios. This work offers an easy-to operate, low cost, and convenience for achieving rapid colorimetric determination of H2O2 and has broad application prospects in daily life and industrial production.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124736, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39137706

ABSTRACT

The most important ionic precursor of gold, [AuCl4]-, is used in aqueous solution leading to chlorohydroxoaurates species, [AuCl4-x(OH)x]- (x = 1-4) due to partial hydrolysis. Their UV spectral signatures are still relatively unknown though very useful in many domains of application. Individual spectra of each of them are determined for the first time thanks to a thorough experimental investigation comprising the range 200-250 nm, surpringly ignored up to now. New isosbestic points useful for species partition analysis are evidenced. Electronic transition attribution is obtained from quantum chemical calculations based on TD-DFT. The prediction of the experimental blueshifted bands of the [AuCl4-x(OH)x]-1 anions was possible only after applying energy corrections calibrated on the full UV range two-band spectrum of the [AuCl4]- complex.

5.
Semina cienc. biol. saude ; 45(2): 171-182, jul./dez. 2024. ilus; tab.
Article in English | LILACS | ID: biblio-1554827

ABSTRACT

Trans-chalcone (TC) is a flavonoid precursor characterized by a wide spectrum of action, with anti-inflammatory and antioxidant effects. However, no validated methods are available in official compendia for the analysis of this substance. Thus, the aim of this work was to develop and validate a simple, fast, and reproducible spectrophotometric method for the analysis of TC in raw material, and in topical pharmaceutical formulation containing TC. The established conditions were: methanol as extracting solvent, and detection wavelength of 309 nm by UV spectrophotometer. All tests followed the rules of Resolution RDC 166, 2017. The proposed method was selective. Linearity was demonstrated in the concentration range of 1 to 8 µg/mL (r = 0.999). Repeatability and intermediate precision were confirmed by low relative standard deviation values of 1.53% and 2.70% for TC, and of 1.73% and 2.91% for formulation containing TC. Accuracy, evaluated through recovery test, was adequate, with minimum of 98.24% and maximum of 100.23% of recovery. It was observed that the small deliberate modifications done did not interfere with the results, demonstrating the method is robust. The results showed that the method was considered suitable for the intended purpose, inexpensive, easy to apply, selective, linear, precise, accurate, and robust for the determination TC, and pharmaceutical formulation containing TC. Thus, the method developed satisfies the need for an analytical method for the determination of TC, and topical formulation containing TC, being effective, innovative and able to aid in the development of the pharmaceutical field.


Trans-chalcona (TC) é um precursor de flavonoides caracterizado por um amplo espectro de ação, como efeitos anti-inflamatórios e antioxidantes. No entanto, não há método validado disponível em compêndio oficial para análise deste composto. Então, o objetivo deste trabalho foi desenvolver e validar um método espectrofotométrico, simples, rápido e reprodutível para análise de TC em matéria-prima, e em formulação farmacêutica tópica contendo TC. As condições estabelecidas foram: metanol como o solvente de extração, e detecção no comprimento de onda de 309 nm por espectrofotometria no UV. Todos os testes seguiram as normas da RDC 166, 2017. O método proposto foi seletivo. A linearidade foi demonstrada na faixa de concentração de 1 a 8 µg/mL (r = 0.999). A repetibilidade e a precisão intermediária foram confirmadas pelos valores baixos de desvio padrão relativo de 1,53% e 2,70% para a TC, e de 1,73% e 2,91% para a formulação contendo TC. A exatidão, avaliada por meio de testes de recuperação, foi adequada, com mínimo de 98,24% e máximo de 100,04% de recuperação. Observou-se que pequenas modificações no método não interferiram nos resultados, demonstrando que o método é robusto. Os resultados demonstraram que o método foi adequado para a finalidade pretendida, barato, de fácil aplicação, seletivo, linear, preciso, exato e robusto para determinação de TC, e de formulação contendo TC. Então o método desenvolvido satisfaz as necessidades de um método analítico para determinação de TC, e de formulação tópica contendo TC, e é eficaz, inovador e pode contribuir para o desenvolvimento da área farmacêutica.

6.
Mikrochim Acta ; 191(10): 575, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39235626

ABSTRACT

Based on the peroxidase activity of Cu-hemin metal-organic framework (Cu-hemin MOF) nanozyme, a colorimetric enzyme-linked immunosensor was developed for the detection of furazolidone (FZD). Cu-hemin MOF is a bimetallic nanozyme that exhibited a stronger catalytic effect compared with single-metal organic framework nanoenzymes. Cu-hemin-MOF catalyzes hydrogen peroxide (H2O2) to produce hydroxyl radicals (•OH), which oxidizes the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (oxTMB). The absorbance change is at 650 nm. The content of AOZ in animal food can be quickly and accurately determined by changes in absorbance. The linear range of the colorimetric biosensor for detecting FZD was 0.01 ~ 62.52 ng/mL, and the limit of detection was as low as 0.01 ng/mL. The recovery of spikes samples was in the range 94.2-108.0 % and reproducibility was less than 4.8%. In addition, the cross-reaction rate was less than 0.1% when detecting other metabolites except AOZ, indicating that the sensor has good applicability and specificity. This study not only provides a better understanding of the relationship between the dispersion of nanoenzymes and enzyme-like activity but also offers a general method for detecting antibiotics using the nanoenzyme colorimetric method.


Subject(s)
Colorimetry , Copper , Furazolidone , Iron , Limit of Detection , Metal-Organic Frameworks , Colorimetry/methods , Copper/chemistry , Furazolidone/analysis , Furazolidone/chemistry , Metal-Organic Frameworks/chemistry , Iron/chemistry , Benzidines/chemistry , Hydrogen Peroxide/chemistry , Animals , Biosensing Techniques/methods , Immunoassay/methods , Catalysis
7.
Water Res ; 266: 122372, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39241383

ABSTRACT

Benzothiazoles (BTHs), benzotriazoles (BTRs), and benzotriazole ultraviolet absorbers (BUVs) have garnered significant attention owing to their persistent nature in the environment and adverse impacts on aquatic organisms. However, there remains a dearth of investigations and studies conducted in tropical marine environments. In this study, we undertook the inaugural distributional survey and ecotoxicological relevance of BTHs, BTRs, and BUVs in seawater and sediments of the western South China Sea (WSCS). Elevated concentrations of BTHs, BTRs, and BUVs in the seawater and suspended particulate matter (SPM) were primarily observed in the Pearl River Estuary (PRE) and the western region of the WSCS, attributed to terrestrial runoff and hydrodynamic processes. Moreover, the transport of these compounds at the seawater-SPM interface was influenced by both the intrinsic properties of the contaminants and temperature variations. Spatially, concentrations of BTHs, BTRs, and BUVs in surface sediments exhibited a diminishing trend with increasing distance from the coast to offshore areas, reflecting notable anthropogenic impacts. Concentration profiles of these compounds in sediment cores displayed a bottom-up increasing trend, with total organic carbon (TOC) identified as the primary determinant governing their accumulation within sediment cores in the WSCS. Terrestrial runoff inputs and atmospheric deposition as major contributors to the occurrence of BTHs, BTRs, and BUVs in the WSCS. Simultaneously, the study underscores the non-negligible moderate mixture risk quotient associated with BTHs, BTRs, and BUVs in the sediments.

8.
Heliyon ; 10(17): e37484, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296231

ABSTRACT

Agroindustry factory's such as the table olive industry etc. that gain importance in the economies of Mediterranean countries. Conventional treatment methods are not effective for treating table olive processing wastewater due to its unique composition. Ultrasound/Ultraviolet light (US/UV) oxidation was used to treat wastewater of table olive industry to improve hydroxyl radicals and enhance organic compound removals. A statistical experimental design was used on table olive processing wastewater to examine the effects of the UV/US oxidation process. The highest removal efficiency for chemical oxygen demand, total organic carbon, color, suspended solids and phenol were obtained as 64 %, 52 % 60 %, 87.5 % and 22.3 %, respectively. These results were obtained under optimal conditions of 20 min reaction time for ultrasound process, intensity of 50 W/cm2, and 20 min reaction time for ultraviolet process in the US/UV process. The study also showed that the ultrasound/ultraviolet oxidation process resulted in small reaction time and low chemical requirements. Sludge production and operational cost decreased at best experimental conditions due to small reaction time and low chemical requirement.

9.
J Photochem Photobiol B ; 260: 113022, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39288553

ABSTRACT

Prolonged exposure of human dermal fibroblasts (HDF) to ultraviolet (UV) radiation triggers the production of reactive oxygen species by upregulating the expression of matrix metalloproteinases (MMPs), causing type-I collagen degradation and photoaging. A sulfated (1 â†’ 3)/(1 â†’ 4) mannogalactan exopolysaccharide (BVP-2) characterized as [→3)-α-Galp-{(1 â†’ 4)-α-6-O-SO3-Manp}-(1 â†’ 3)-α-6-O-SO3-Galp-(1→] was isolated from seaweed-associated heterotrophic bacterium Bacillus velezensis MTCC13097. Whole genome analysis of B. velezensis MTCC13097 (Accession number JAKYLL000000000) revealed saccharine biosynthetic gene clusters for exopolysaccharide production. BVP-2 administered cells showed noteworthy reduction in mitochondrial superoxide (∼85 %, p < 0.05) and ROS production (62 %) than those exhibited by UV-A irradiated HDF cells. Oxidative imbalance in HDF cells (after UV-A exposure) was recovered with BVP-2 treatment by significantly downregulating nitric oxide (NO) production (98.6 µM/mL, 1.9-fold) and DNA damage (⁓67 %) in comparison with UV-A induced cells (191.8 µM/mL and 98.7 %, respectively). UV-irradiated HDF cells showed a ∼30-50 % downregulation in the expression of MMPs (1, 2, and 9) following treatment with BVP-2. Considerable amount of sulfation (18 %) along with (1 â†’ 3)/(1 â†’ 4) glycosidic linkages in BVP-2 could be pivotal factors for down-regulation of the intracellular MMP-1, which was further supported by molecular docking and structure-activity studies. The (1 â†’ 3)/(1 â†’ 4)-linked bacterial exopolysaccharide (BVP-2) might be used as prospective natural lead to attenuate and mitigate UV-A-induced photoaging.

10.
Article in English | MEDLINE | ID: mdl-39305443

ABSTRACT

Disinfection with LED lamps is a promising ecological and economical substitute for mercury lamps. However, the optimal time/dose relationship needs to be established. Pathogen inactivation by UV-A primarily relies on induced reactive oxygen species (ROS) formation and subsequent oxidative damage. While effective against bacteria and enveloped viruses, non-enveloped viruses are less sensitive. In this study, we explored the disinfection properties of 10 W UV-A LED, emitting in the 365-375 nm range. UV-A at high values of irradiance (~ 0.46 W/cm2) can potentially induce ROS formation and direct photochemical damage of the pathogen nucleic acids, thus improving the disinfection. The UV-A inactivation was evaluated for the bacterium Escherichia coli (E. coli), non-enveloped RNA bacteriophage MS2, and enveloped mammalian RNA virus-Semliki Forest virus (SFV). The 4 log10 reduction doses for E. coli and SFV were 268 and 241 J/cm2, respectively. Furthermore, in irradiated E. coli, ROS production positively correlated with the inactivation rate. In the case of MS2 bacteriophage, the 2.5 log10 inactivation was achieved by 679 J/cm2 within 30 min of irradiation. The results demonstrate significant disinfection efficiency of non-enveloped virus MS2 using high-irradiance UV-A. This suggests a potential strategy for improving the inactivation of UV-A-unsusceptible pathogens, particularly non-enveloped viruses. Additionally, the direct UV-A irradiation of self-replicating viral RNA from SFV led to a significant loss of viral gene expression in cells transfected with the irradiated RNA. Therefore, the virus inactivation mechanism of high-irradiance UV-A LED can be partially determined by the direct damage of viral RNA.

11.
Chemosphere ; 364: 143307, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39260597

ABSTRACT

Opioids are widely distributed, potent prescription analgesics that are known to be diverted for illicit use. Their prevalence of use is reflected by high concentrations of parent compounds and/or metabolites found in samples collected from wastewater treatment plants. Given that treatment byproducts enter the environment through several routes, the consequences of insufficient removal by treatment methods include unwanted environmental exposure and potential to disrupt ecosystems. Activated sludge treatment has been widely investigated for a large suite of prescription opioids but the same cannot be said for UV and chlorination. Additionally, the biosolid cycle of opioids has been overlooked previously. This study aimed to determine the extent to which secondary and tertiary wastewater treatment methods remove opioids from influent, and the associated environmental exposure for those persistent, as well as the fate of opioids in biosolids. Membrane bioreactor treatment proved effective for natural and semi-synthetic opioids while the effect of UV treatment was negligible. Chlorination was the most effective treatment method resulting in effluent with concentrations below theoretical predicted no-effect concentration. Biosolids are not subjected to any additional biological or chemical treatment after membrane bioreactor treatment and the levels detected in biosolid used as fertiliser had several opioids at potentially hazardous concentrations, indicated by a QSAR theoretical model. This data indicates a potential issue regarding the treatment process of biosolids and reliance on chlorination for effluent treatment that should be investigated in other treatment plants.


Subject(s)
Analgesics, Opioid , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Analgesics, Opioid/analysis , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods , Sewage/chemistry , Bioreactors , Halogenation , Ultraviolet Rays
12.
Int J Public Health ; 69: 1607604, 2024.
Article in English | MEDLINE | ID: mdl-39310720

ABSTRACT

Objectives: This study evaluates the feasibility and impact of conveying personalized sun protection message supported by a UV photograph of the face in Switzerland. Methods: 440 adults from 14 private and public sites associated with high sun exposure received a skin cancer prevention intervention composed of a facial UV-filtered photograph and individual counselling by a trained registered nurse. Pre-/post intervention surveys assessed sun protection of participants, their skin cancer risk and reasons for behavioural change. Results: The range of facial UV spots' count per individual was very broad (0-590) and mainly determined by phototype, followed by age. Three months after the intervention, 61% of participants positively changed their sun protection habit both during leisure and at work. Use of all sun protection means increased. No factor could be specifically associated to that propension for change. The individualized message was perceived as the main motivation for change. Conclusion: Personalized sun protection messages supported by a facial UV photograph led to significant favourable behavioural change in a highly sun-exposed population of adults.


Subject(s)
Feasibility Studies , Photography , Skin Neoplasms , Sunscreening Agents , Ultraviolet Rays , Humans , Switzerland , Male , Female , Adult , Skin Neoplasms/prevention & control , Middle Aged , Ultraviolet Rays/adverse effects , Sunscreening Agents/administration & dosage , Health Behavior , Young Adult , Aged , Sunburn/prevention & control , Adolescent , Face
13.
Food Chem X ; 24: 101813, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39310884

ABSTRACT

Lanzhou lily bulbs (Lilium davidii var. unicolor) are Chinese traditional edible fruits; however, industrial benefits are limited owing to ineffective post-harvest preservation technology. This study investigated the effect of 4.5 kJ/m2 ultraviolet (UV)-C radiation and 2.0 g/L L-cysteine (L-cys) treatment on storage quality and reactive oxygen species (ROS) metabolism in lily bulbs. The combined UV-C/L-cys treatment inhibited the increase in decay rate, weight loss, ∆E⁎ and reducing sugar content; delayed the decrease of firmness and starch content; retained aromatic volatile compounds; and reduced pungent compounds. UV-C/L-cys treatment reduced H2O2 content, O2 ·- production rate, lipoxygenase activity and malondialdehyde content by maintaining high ROS-scavenging enzymes (superoxide dismutase and catalase) activities and substances (total phenolic and ascorbic acid) levels, thereby protecting mitochondrial structure. Mantel test indicated that post-harvest quality and volatile compounds were closely related to ROS metabolism. Hence, UV-C/L-cys treatment can efficiently delay lily bulb senescence by reducing ROS accumulation during storage.

14.
Food Chem X ; 24: 101795, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39310895

ABSTRACT

Furfural compounds, including 5-hydroxymethylfurfural, furfural, and 5-methylfurfural, are common in foods and pose health risks. This study presents a pipette-tip solid-phase extraction with in-situ derivatization (PT-KF-SPE/ISD) method for rapid analysis of furfural compounds in various food matrices. Utilizing natural kapok fiber as an efficient adsorbent, this method integrates extraction and derivatization into a single step via a simple pull-push operation. Derivatization with 2,4-dinitrophenylhydrazine increases the hydrophobicity and ultraviolet absorption of furfural compounds, enabling sensitive liquid chromatography-ultraviolet detection. The method shows good linearity, sensitivity, and reproducibility, with limits of detection in ranges of 3.9-6.0 ng/mL. Real sample analysis confirms its applicability in detecting furfural compounds in beverages and herbal products, offering a reliable and eco-friendly solution for food safety and quality control. Five greenness assessment metrics demonstrate the method's excellent environmental friendliness. This approach highlights the advantages of combining natural adsorbents with in-situ derivatization for efficient food analysis.

15.
Adv Sci (Weinh) ; : e2403603, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312476

ABSTRACT

The diversity of secondary metabolites is an important means for plants to cope with the complex and ever-changing terrestrial environment. Plant biosynthetic gene clusters (BGCs) are crucial for the biosynthesis of secondary metabolites. The domestication and evolution of BGCs and how they affect plant secondary metabolites biosynthesis and environmental adaptation are still not fully understood. Buckwheat exhibits strong resistance and abundant secondary metabolites, especially flavonoids, allowing it to thrive in harsh environments. A non-canonical BGC named UFGT3 cluster is identified, which comprises a phosphorylase kinase (PAK), two transcription factors (MADS1/2), and a glycosyltransferase (UFGT3), forming a complete molecular regulatory module involved in flavonoid biosynthesis. This cluster is selected during Tartary buckwheat domestication and is widely present in species of the Fagopyrum genus. In wild relatives of cultivated buckwheat, a gene encoding anthocyanin glycosyltransferase (AGT), which glycosylates pelargonidin into pelargonidin-3-O-glucoside, is found inserted into this cluster. The pelargonidin-3-O-glucoside can help plants resist UV stress, endowing wild relatives with stronger high-altitude adaptability. This study provides a new research paradigm for the evolutionary dynamics of plant BGCs, and offers new perspectives for exploring the mechanism of plant ecological adaptability driven by environmental stress through the synthesis of secondary metabolites.

16.
J Pharm Sci ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313152

ABSTRACT

Changes in the protonation state of lyophilized proteins can impact structural integrity, chemical stability, and propensity to aggregate upon reconstitution. When a buffer is chosen, the freezing/drying process may result in dramatic changes in the protonation state of the protein due to ionization shift of the buffer. In order to determine whether protonation shifts are occurring, ionizable probes can be added to the formulation. Optical probes (dyes) have shown dramatic ionization changes in lyophilized products, but it is unclear whether the pH indicator is uniform throughout the matrix and whether the change in the pH indicator actually mirrors drug ionization changes. In solid-state NMR (SSNMR) spectroscopy, the chemical shift of the carbonyl carbon in carboxylic acids is very sensitive to the ionization state of the acid. Therefore, SSNMR can be used to measure ionization changes in a lyophilized matrix by employing a small quantity of an isotopically-labeled carboxylic acid species in the formulation. This paper compares the apparent pH of six trehalose-containing lyophilized buffer systems using SSNMR and UV-Vis diffuse reflectance spectroscopy (UVDRS). Both SSNMR and UVDRS results using two different ionization probes (butyric acid and bromocresol purple, respectively) showed little change in apparent acidity compared to the pre-lyophilized solution in a sodium citrate buffer, but a greater change was observed in potassium phosphate, sodium phosphate, and histidine buffers. While the trends between the two methods were similar, there were differences in the numerical values of equivalent pH (pHeq) observed between the two methods. The potential causes contributing to the differences are discussed.

17.
Int J Pharm ; 665: 124690, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39260749

ABSTRACT

Epigallocatechin-3-gallate (EGCG), a catechin present in green tea, has been studied extensively for its potential as a cosmetic ingredient due to its various biological properties. However, the low stability and bioavailability of EGCG have hindered its effective utilization in cosmetic applications. This study, to improve the stability and bioavailability of EGCG for reversing skin photo-aging, nonapeptide-1-conjugated mesoporous silica nanoparticles (EGCG@NP-MSN) were fabricated to load EGCG. MSNs can regulate the EGCG release and provide ultraviolet light (UV) protection to possess excellent photostability. Nonapeptide-1 exhibits melanin transfer interference properties and reduces the melanin content in treated skin areas. In vitro and in vivo results confirmed that the EGCG-loaded MSNs retained antioxidant properties, effectively scavenged the melanin and significantly reduced the deoxyribonucleic acid (DNA) damage in skin cells exposed to UV irradiation. The melanin inhibition rate is 5.22 times and the tyrosinase inhibition rate is 1.57 times that of free EGCG. The utilization of this innovative platform offers the potential for enhanced stability, controlled release, and targeted action of EGCG, thereby providing significant advantages for skin application.This delivery system combines the advantages of antioxidant, anti-aging, and anti-UV radiation properties, paving the way for the cosmetics development with improved efficacy and better performance in promoting skin health and appearance.

18.
Cancers (Basel) ; 16(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39272952

ABSTRACT

The rapidly increasing skin cancer rates in Canada are alarming, with current data estimating that 1/3 of Canadians will be affected in their lifetime. Thus, deeper understanding of high-risk sun exposure behaviors is needed to help counter this trend. Only limited action has been taken by federal/provincial governments to reduce skin cancer incidence. A cross-sectional survey study was conducted in Manitoba, with frequency counts, means, and percentages used to encapsulate responses. Age- and gender-adjusted odds ratios were calculated using logistic regression analyses. Our study identified worrying inadequacies in sun protective behaviors and attitudes, with the threat of such high-risk behaviors amplified by a lack of skin cancer awareness. Alarming elements were noted in participants' sun exposure history (>65% reported a history of sunburns, >50% previously used a tanning bed, and >75% recently tanned for pleasure), beliefs and attitudes (>50% believe that they look better/healthier with a tan, and >40% believe that having a base tan is protective against further sun damage), and sun protection efforts (sun protective clothing was used <60% of the time, sunscreen was used by <50%, and there was a lack of knowledge about sunscreen characteristics in ~30% of respondents), in addition to significant differences being established between demographic subgroups (based on gender, age, skin phototype, income, and education attained). This study provides worrisome insight onto the grim landscape of sun protective behaviors and attitudes in Manitoba, which will inevitably translate into higher skin cancer rates and should serve as a call to action to promote targeted public health messaging in this jurisdiction and beyond.

19.
Int J Mol Sci ; 25(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39273154

ABSTRACT

UV-B stress destroys the photosynthetic system of Rhododendron chrysanthum Pall. (R. chrysanthum), as manifested by the decrease of photosynthetic efficiency and membrane fluidity, and also promotes the accumulation of lignin. The MYB (v-myb avian myeloblastosis viral oncogene homolog) family of transcription factors can be involved in the response to UV-B stress through the regulation of lignin biosynthesis. This study indicated that both the donor and recipient sides of the R. chrysanthum were significantly damaged based on physiological index measurements made using OJIP curves under UV-B stress. The analysis of bioinformatics data revealed that the RcTRP5 transcription factor exhibits upregulation of acetylation at the K68 site, directly regulating the biosynthesis of lignin. Additionally, there was upregulation of the K43 site and downregulation of the K83 site of the CAD enzyme, as well as upregulation of the K391 site of the PAL enzyme. Based on these findings, we conjectured that the RcTRP5 transcription factor facilitates acetylation modification of both enzymes, thereby indirectly influencing the biosynthesis of lignin. This study demonstrated that lignin accumulation can alleviate the damage caused by UV-B stress to R. chrysanthum, which provides relevant ideas for improving lignin content in plants, and also provides a reference for the study of the metabolic regulation mechanism of other secondary substances.


Subject(s)
Gene Expression Regulation, Plant , Lignin , Plant Proteins , Transcription Factors , Ultraviolet Rays , Lignin/biosynthesis , Lignin/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Acetylation
20.
Anal Chim Acta ; 1327: 343149, 2024 Oct 23.
Article in English | MEDLINE | ID: mdl-39266061

ABSTRACT

BACKGROUND: We have developed and validated methods for the determination of three major tryptophan metabolites metabolized by the kynurenine pathway, namely kynurenine (KYN), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HAA). KYN and 3-HK were determined using RP-HPLC-UV, and 3-HAA using RP-HPLC-FL. We then developed a comparative method based on CE-UV. The developed methods were validated and 36 samples of human brain glioma tissue homogenates were assayed in all 4 grades of malignancy, and the concentration levels of assayed metabolites were compared with available clinical data. RESULTS: Each of the methods is characterized by high precision, accuracy and repeatability, and the determined LOQ values indicate the possibility of performing quantitative analysis on the available samples of human glioma tumors (36 samples in grades G1-G4). The concentration values of selected metabolites obtained using HPLC methods were subjected to statistical analysis and preliminary clinical data processing. We found statistically significant differences in the concentrations of KYN, 3-HK and 3-HAA between the various grades of the disease, and characterized these differences more precisely by means of the Dunn-Bonferroni post hoc test. We did not find that the patient's environment or habits significantly affected the metabolites concentration of the study samples population. In addition, we showed a high positive correlation between KYN, 3-HK and 3-HAA, which appears to be a characteristic that describes metabolic changes of Trp in relation to KYN, 3-HK and 3-HAA, and indicates potential diagnostic value. SIGNIFICANCE: The preliminary studies carried out contribute new knowledge on the molecular basis of human brain glioma. They also provide valuable information useful for the development of glioma diagnostics, differentiation of disease grades and assessment of the patient's condition. The obtained relationships between metabolite concentrations and the grade of malignancy of the disease and correlations between metabolite concentrations constitute the basis for further broader biochemical and clinical analysis.


Subject(s)
Brain Neoplasms , Glioma , Kynurenine , Tryptophan , Humans , Tryptophan/metabolism , Tryptophan/analysis , Glioma/metabolism , Chromatography, High Pressure Liquid , Kynurenine/metabolism , Kynurenine/analogs & derivatives , Kynurenine/analysis , Male , Middle Aged , Female , Brain Neoplasms/metabolism , 3-Hydroxyanthranilic Acid/metabolism , 3-Hydroxyanthranilic Acid/analysis , Adult , Aged
SELECTION OF CITATIONS
SEARCH DETAIL