Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters








Publication year range
1.
Neuropharmacology ; 259: 110100, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117105

ABSTRACT

Stinels are a novel class of N-methyl-d-aspartate glutamate receptor (NMDAR) positive allosteric modulators. We explored mechanism of action and NR2 subtype specificity of the stinel zelquistinel (ZEL) in HEK 293 cells expressing recombinant NMDARs. ZEL potently enhanced NMDAR current at NR2A (EC50 = 9.9 ± 0.5 nM) and NR2C-containing (EC50 = 9.7 ± 0.6 nM) NMDARs, with a larger ceiling enhancement at NR2B-NMDAR (EC50 = 35.0 ± 0.7 nM), while not affecting NR2D-containing NMDARs. In cells expressing NR2A and NR2C-containing NMDARs, ZEL exhibited an inverted-U dose-response relation, with a low concentration enhancement and high concentration suppression of NMDAR currents. Extracellular application of ZEL potentiated NMDAR receptor activity via prolongation of NMDAR currents. Replacing the slow Ca2+ intracellular chelator EGTA with the fast chelator BAPTA blocked ZEL potentiation of NMDARs, suggesting an action on intracellular Ca2+-calmodulin-dependent inactivation (CDI). Consistent with this mechanism of action, removal of the NR1 intracellular C-terminus, or intracellular infusion of a calmodulin blocking peptide, blocked ZEL potentiation of NMDAR current. In contrast, BAPTA did not prevent high-dose suppression of current, indicating this effect has a different mechanism of action. These data indicate ZEL is a novel positive allosteric modulator that binds extracellularly and acts through a unique long-distance mechanism to reduce NMDAR CDI, eliciting enhancement of NMDAR current. The critical role that NMDARs play in long-term, activity-dependent synaptic plasticity, learning, memory and cognition, suggests dysregulation of CDI may contribute to psychiatric disorders such as depression, schizophrenia and others, and that the stinel class of drugs can restore NMDAR-dependent synaptic plasticity by reducing activity-dependent CDI.

2.
Nanomaterials (Basel) ; 14(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057872

ABSTRACT

Brain-inspired flexible neuromorphic devices are of great significance for next-generation high-efficiency wearable sensing and computing systems. In this paper, we propose a flexible organic electrochemical transistor using poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)- 3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) as the organic semiconductor and poly(methyl methacrylate) (PMMA)/LiClO4 solid-state electrolyte as the gate dielectric layer. Under gate voltage modulation, an electric double layer (EDL) forms between the dielectric layer and the channel, allowing the device to operate at low voltages. Furthermore, by leveraging the double layer effect and electrochemical doping within the device, we successfully mimic various synaptic behaviors, including excitatory post-synaptic currents (EPSC), paired-pulse facilitation (PPF), high-pass filtering characteristics, transitions from short-term plasticity (STP) to long-term plasticity (LTP), and demonstrate its image recognition and storage capabilities in a 3 × 3 array. Importantly, the device's electrical performance remains stable even after bending, achieving ultra-low-power consumption of 2.08 fJ per synaptic event at -0.001 V. This research may contribute to the development of ultra-low-power neuromorphic computing, biomimetic robotics, and artificial intelligence.

3.
Eur J Neurosci ; 60(3): 4362-4389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857895

ABSTRACT

The excitatory monosynaptic activation of hippocampal CA1 pyramidal cells is spatially segregated such that the proximal part of the apical dendritic tree in stratum radiatum (SR) receives input from the hippocampal CA3 region while the distal part in the stratum-lacunosum-moleculare (SLM) receives input mainly from the entorhinal cortex. The AMPA receptor-mediated (AMPA) signalling of SLM synapses in slices from neonatal rats was previously found to considerably differ from that of the SR synapses. In the present study, AMPA signalling of SLM synapses in 1-month-old rats has been examined, that is, when the hippocampus is essentially functionally mature. For the SR synapses, this time is characterized by a facilitatory shift in short-term plasticity, in the disappearance of labile postsynaptic AMPA signalling, a property thought to be important for early activity-dependent organization of neural circuits, and the expression of an adult form of long-term potentiation. We found that the SLM synapses alter their short-term plasticity similarly to that of the SR synapses. However, the labile postsynaptic AMPA signalling was not only maintained but substantially enhanced in the SLM synapses. The long-term potentiation observed was not of the adult form but like that of the neonatal SR synapses based on unsilencing of AMPA labile synapses. We propose that these features of the SLM synapses in the mature hippocampus will help to produce a flexible map of the multimodal sensory input reaching the SLM required for its conjunctive operation with the SR input to generate a proper functional output from the CA1 region.


Subject(s)
CA1 Region, Hippocampal , Glutamic Acid , Rats, Wistar , Receptors, AMPA , Synaptic Transmission , Animals , Rats , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , Synaptic Transmission/physiology , Glutamic Acid/metabolism , Receptors, AMPA/metabolism , Neuronal Plasticity/physiology , Excitatory Postsynaptic Potentials/physiology , Synapses/physiology , Synapses/metabolism , Male , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Patch-Clamp Techniques
4.
Biol Psychiatry ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909668

ABSTRACT

Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in posttraumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (TMS) is thought to work through long-term potentiation-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. In a recent failed randomized controlled trial we emphasized the necessity of correctly identifying cortical targets, the directionality of TMS protocols, and the role of memory activation. Here, we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature by searching for repetitive TMS clinical trials involving patients with PTSD and outcomes. We searched MEDLINE through October 25, 2023, for "TMS and PTSD" and "transcranial magnetic stimulation and posttraumatic stress disorder." Thirty-one publications met our inclusion criteria (k = 17 randomized controlled trials, k = 14 open label). Randomized controlled trial protocols were varied in terms of TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority of low-frequency (k = 5) versus high-frequency (k = 6) protocols or by stimulation location. Memory provocation or exposure protocols (k = 7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.

5.
Bioessays ; 46(6): e2400008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697917

ABSTRACT

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Subject(s)
Neuronal Plasticity , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/physiology , Animals , Neuronal Plasticity/genetics , Humans , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Synapses/genetics , Cerebellar Cortex/cytology , Cerebellar Cortex/metabolism , Cerebellar Cortex/physiology
6.
J Theor Biol ; 588: 111818, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38621583

ABSTRACT

The standard consolidation theory states that short-term memories located in the hippocampus enable the consolidation of long-term memories in the neocortex. In other words, the neocortex slowly learns long-term memories with a transient support of the hippocampus that quickly learns unstable memories. However, it is not clear yet what could be the neurobiological mechanisms underlying these differences in learning rates and memory time-scales. Here, we propose a novel modeling approach of the standard consolidation theory, that focuses on its potential neurobiological mechanisms. In addition to synaptic plasticity and spike frequency adaptation, our model incorporates adult neurogenesis in the dentate gyrus as well as the difference in size between the neocortex and the hippocampus, that we associate with distance-dependent synaptic plasticity. We also take into account the interconnected spatial structure of the involved brain areas, by incorporating the above neurobiological mechanisms in a coupled neural field framework, where each area is represented by a separate neural field with intra- and inter-area connections. To our knowledge, this is the first attempt to apply neural fields to this process. Using numerical simulations and mathematical analysis, we explore the short-term and long-term dynamics of the model upon alternance of phases of hippocampal replay and retrieval cue of an external input. This external input is encodable as a memory pattern in the form of a multiple bump attractor pattern in the individual neural fields. In the model, hippocampal memory patterns become encoded first, before neocortical ones, because of the smaller distances between the bumps of the hippocampal memory patterns. As a result, retrieval of the input pattern in the neocortex at short time-scales necessitates the additional input delivered by the memory pattern of the hippocampus. Neocortical memory patterns progressively consolidate at longer times, up to a point where their retrieval does not need the support of the hippocampus anymore. At longer times, perturbation of the hippocampal neural fields by neurogenesis erases the hippocampus pattern, leading to a final state where the memory pattern is exclusively evoked in the neocortex. Therefore, the dynamics of our model successfully reproduces the main features of the standard consolidation theory. This suggests that neurogenesis in the hippocampus and distance-dependent synaptic plasticity coupled to synaptic depression and spike frequency adaptation, are indeed critical neurobiological processes in memory consolidation.


Subject(s)
Hippocampus , Memory Consolidation , Models, Neurological , Neuronal Plasticity , Neuronal Plasticity/physiology , Humans , Hippocampus/physiology , Memory Consolidation/physiology , Neocortex/physiology , Animals , Neurogenesis/physiology
7.
Adv Sci (Weinh) ; 11(16): e2400304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408158

ABSTRACT

Interest has grown in services that consume a significant amount of energy, such as large language models (LLMs), and research is being conducted worldwide on synaptic devices for neuromorphic hardware. However, various complex processes are problematic for the implementation of synaptic properties. Here, synaptic characteristics are implemented through a novel method, namely side chain control of conjugated polymers. The developed devices exhibit the characteristics of the biological brain, especially spike-timing-dependent plasticity (STDP), high-pass filtering, and long-term potentiation/depression (LTP/D). Moreover, the fabricated synaptic devices show enhanced nonvolatile characteristics, such as long retention time (≈102 s), high ratio of Gmax/Gmin, high linearity, and reliable cyclic endurance (≈103 pulses). This study presents a new pathway for next-generation neuromorphic computing by modulating conjugated polymers with side chain control, thereby achieving high-performance synaptic properties.


Subject(s)
Polymers , Synapses , Polymers/chemistry , Synapses/physiology , Neuronal Plasticity/physiology , Neural Networks, Computer
8.
Proc Natl Acad Sci U S A ; 120(43): e2305460120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37856547

ABSTRACT

Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.


Subject(s)
Long-Term Potentiation , Neocortex , Rats , Animals , Long-Term Potentiation/physiology , Neurons , Synapses/physiology , Synaptic Transmission/physiology , Neuronal Plasticity/physiology , Hippocampus/physiology
9.
J Physiol ; 601(23): 5165-5193, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37889516

ABSTRACT

When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.


Subject(s)
Neurons , Synaptic Transmission , Neurons/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Neuronal Plasticity/physiology
10.
ACS Appl Mater Interfaces ; 15(33): 39530-39538, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37556764

ABSTRACT

Biological synaptic function simulation using flexible electronic devices based on low-dimensional semiconductor materials is an emerging and rapidly evolving research field with promising applications in brain-like computers and artificial intelligence systems. In this work, we present the fabrication of solution compatible MoS2 thin-film transistors on the ultrathin polymethyl methacrylate substrates via layer-by-layer assembly followed by a one-step transfer printing method. The MoS2 transport channel is controlled by ionic liquid gating with 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, resulting in excellent synaptic performances for emulating memory and perception synapse functions. To investigate the synaptic behaviors, we conduct a series of synaptic spike-dependent experiments and propose an advanced model that delineates the long-term plasticity and short-term plasticity with separate characteristic factors. These findings provide insights into the fundamental mechanisms of synaptic plasticity in electric double-layer devices and contribute to a better understanding of their synaptic performances. In addition, we examine the effects of bending conditions on synaptic plasticity and synaptic weights, unveiling the synergistic interplay between mechanical deformation and synaptic behaviors. Our experimental results, combined with the developed model, are in good agreement and shed light on the influence of mechanical flexibility on the synaptic properties of the devices. In summary, this study establishes a solid foundation for further development of flexible synaptic devices from both practical and theoretical perspectives.

11.
Comput Biol Med ; 163: 107213, 2023 09.
Article in English | MEDLINE | ID: mdl-37413849

ABSTRACT

The formation of customized neural networks as the basis of brain functions such as receptive field selectivity, learning or memory depends heavily on the long-term plasticity of synaptic connections. However, the current mean-field population models commonly used to simulate large-scale neural network dynamics lack explicit links to the underlying cellular mechanisms of long-term plasticity. In this study, we developed a new mean-field population model, the plastic density-based neural mass model (pdNMM), by incorporating a newly developed rate-based plasticity model based on the calcium control hypothesis into an existing density-based neural mass model. Derivation of the plasticity model was carried out using population density methods. Our results showed that the synaptic plasticity represented by the resulting rate-based plasticity model exhibited Bienenstock-Cooper-Munro-like learning rules. Furthermore, we demonstrated that the pdNMM accurately reproduced previous experimental observations of long-term plasticity, including characteristics of Hebbian plasticity such as longevity, associativity and input specificity, on hippocampal slices, and the formation of receptive field selectivity in the visual cortex. In conclusion, the pdNMM is a novel approach that can confer long-term plasticity to conventional mean-field neuronal population models.


Subject(s)
Neuronal Plasticity , Neurons , Neurons/physiology , Neuronal Plasticity/physiology , Learning/physiology , Neural Networks, Computer , Hippocampus , Models, Neurological
12.
Somatosens Mot Res ; 40(4): 133-140, 2023 12.
Article in English | MEDLINE | ID: mdl-36565289

ABSTRACT

PURPOSE/AIM: Rett (RTT) syndrome, a neurodevelopmental disorder, results from loss-of-function mutations in methyl-CpG-binding protein 2. We studied activity-dependent plasticity induced by sensory deprivation via whisker trimming in early symptomatic male mutant mice to assess neural rewiring capability. METHODS: One whisker was trimmed for 0-14 days and intrinsic optical imaging of the transient reduction of brain blood oxygenation resulting from neural activation by 1 second of wiggling of the whisker stump was compared to that of an untrimmed control whisker. RESULTS: Cortical evoked responses to wiggling a non-trimmed whisker were constant for 14 days, reduced for a trimmed whisker by 49.0 ± 4.3% in wild type (n = 14) but by only 22.7 ± 4.6% in mutant (n = 18, p = 0.001). CONCLUSION: As the reduction in neural activation following sensory deprivation in whisker barrel cortex is known to be dependent upon evoked and basal neural activity, impairment of cortical re-wiring following whisker trimming provides a paradigm suitable to explore mechanisms underlying deficiencies in the establishment and maintenance of synapses in RTT, which can be potentially targeted by therapeutics.


Subject(s)
Sensory Deprivation , Vibrissae , Mice , Animals , Male , Sensory Deprivation/physiology , Vibrissae/physiology , Somatosensory Cortex/physiology
13.
Methods Mol Biol ; 2576: 461-475, 2023.
Article in English | MEDLINE | ID: mdl-36152210

ABSTRACT

Electrophysiological technique is an efficient tool for investigating the synaptic regulatory effects mediated by the endocannabinoid system. Stimulation of presynaptic type 1 cannabinoid receptor (CB1) is the principal mode by which endocannabinoids suppress transmitter release in the central nervous system, but a non-retrograde manner of functioning and other receptors have also been described. Endocannabinoids are key modulators of both short- and long-term plasticity. Here, we discuss ex vivo electrophysiological approaches to examine synaptic signaling induced by cannabinoid and endocannabinoid molecules in the mammalian brain.


Subject(s)
Cannabinoids , Endocannabinoids , Animals , Cannabinoid Receptor Modulators/pharmacology , Cannabinoid Receptor Modulators/physiology , Mammals , Receptors, Cannabinoid , Signal Transduction/physiology , Synaptic Transmission
14.
Biomedicines ; 10(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36551941

ABSTRACT

A central hypothesis on brain functioning is that long-term potentiation (LTP) and depression (LTD) regulate the signals transfer function by modifying the efficacy of synaptic transmission. In the cerebellum, granule cells have been shown to control the gain of signals transmitted through the mossy fiber pathway by exploiting synaptic inhibition in the glomeruli. However, the way LTP and LTD control signal transformation at the single-cell level in the space, time and frequency domains remains unclear. Here, the impact of LTP and LTD on incoming activity patterns was analyzed by combining patch-clamp recordings in acute cerebellar slices and mathematical modeling. LTP reduced the delay, increased the gain and broadened the frequency bandwidth of mossy fiber burst transmission, while LTD caused opposite changes. These properties, by exploiting NMDA subthreshold integration, emerged from microscopic changes in spike generation in individual granule cells such that LTP anticipated the emission of spikes and increased their number and precision, while LTD sorted the opposite effects. Thus, akin with the expansion recoding process theoretically attributed to the cerebellum granular layer, LTP and LTD could implement selective filtering lines channeling information toward the molecular and Purkinje cell layers for further processing.

15.
Front Cell Neurosci ; 16: 1037721, 2022.
Article in English | MEDLINE | ID: mdl-36385953

ABSTRACT

Synapses are junctions between a presynaptic neuron and a postsynaptic cell specialized for fast and precise information transfer. The presynaptic terminal secretes neurotransmitters via exocytosis of synaptic vesicles. Exocytosis is a tightly regulated reaction that occurs within a millisecond of the arrival of an action potential. One crucial parameter in determining the characteristics of the transmitter release kinetics is the coupling distance between the release site and the Ca2+ channel. Still, the technical limitations have hindered detailed analysis from addressing how the coupling distance is regulated depending on the development or activity of the synapse. However, recent technical advances in electrophysiology and imaging are unveiling their different configurations in different conditions. Here, I will summarize developmental- and activity-dependent changes in the coupling distances revealed by recent studies.

16.
BMC Neurosci ; 23(1): 39, 2022 06 26.
Article in English | MEDLINE | ID: mdl-35754033

ABSTRACT

BACKGROUND: Corticotropin-releasing factor (CRF) is the major neuromodulator orchestrating the stress response, and is secreted by neurons in various regions of the brain. Cerebellar CRF is released by afferents from inferior olivary neurons and other brainstem nuclei in response to stressful challenges, and contributes to modulation of synaptic plasticity and motor learning behavior via its receptors. We recently found that CRF modulates facial stimulation-evoked molecular layer interneuron-Purkinje cell (MLI-PC) synaptic transmission via CRF type 1 receptor (CRF-R1) in vivo in mice, suggesting that CRF modulates sensory stimulation-evoked MLI-PC synaptic plasticity. However, the mechanism of how CRF modulates MLI-PC synaptic plasticity is unclear. We investigated the effect of CRF on facial stimulation-evoked MLI-PC long-term depression (LTD) in urethane-anesthetized mice by cell-attached recording technique and pharmacological methods. RESULTS: Facial stimulation at 1 Hz induced LTD of MLI-PC synaptic transmission under control conditions, but not in the presence of CRF (100 nM). The CRF-abolished MLI-PC LTD was restored by application of a selective CRF-R1 antagonist, BMS-763,534 (200 nM), but it was not restored by application of a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Blocking cannabinoid type 1 (CB1) receptor abolished the facial stimulation-induced MLI-PC LTD, and revealed a CRF-triggered MLI-PC long-term potentiation (LTP) via CRF-R1. Notably, either inhibition of protein kinase C (PKC) with chelerythrine (5 µM) or depletion of intracellular Ca2+ with cyclopiazonic acid (100 µM), completely prevented CRF-triggered MLI-PC LTP in mouse cerebellar cortex in vivo. CONCLUSIONS: The present results indicated that CRF blocked sensory stimulation-induced opioid-dependent MLI-PC LTD by triggering MLI-PC LTP through CRF-R1/PKC and intracellular Ca2+ signaling pathway in mouse cerebellar cortex. These results suggest that activation of CRF-R1 opposes opioid-mediated cerebellar MLI-PC plasticity in vivo in mice.


Subject(s)
Corticotropin-Releasing Hormone , Purkinje Cells , Analgesics, Opioid/pharmacology , Animals , Cerebellar Cortex/metabolism , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacology , Interneurons/metabolism , Mice , Neuronal Plasticity/physiology , Purkinje Cells/metabolism , Receptor, Cannabinoid, CB1/metabolism
17.
Front Neurosci ; 16: 838832, 2022.
Article in English | MEDLINE | ID: mdl-35431777

ABSTRACT

Spiking neural network (SNN) is considered to be the brain-like model that best conforms to the biological mechanism of the brain. Due to the non-differentiability of the spike, the training method of SNNs is still incomplete. This paper proposes a supervised learning method for SNNs based on associative learning: ALSA. The method is based on the associative learning mechanism, and its realization is similar to the animal conditioned reflex process, with strong physiological plausibility and rationality. This method uses improved spike-timing-dependent plasticity (STDP) rules, combined with a teacher layer to induct spikes of neurons, to strengthen synaptic connections between input spike patterns and specified output neurons, and weaken synaptic connections between unrelated patterns and unrelated output neurons. Based on ALSA, this paper also completed the supervised learning classification tasks of the IRIS dataset and the MNIST dataset, and achieved 95.7 and 91.58% recognition accuracy, respectively, which fully proves that ALSA is a feasible SNNs supervised learning method. The innovation of this paper is to establish a biological plausible supervised learning method for SNNs, which is based on the STDP learning rules and the associative learning mechanism that exists widely in animal training.

19.
Brain Stimul ; 15(2): 352-359, 2022.
Article in English | MEDLINE | ID: mdl-35104664

ABSTRACT

Transcranial focused ultrasound (tFUS) neuromodulation provides a promising emerging non-invasive therapy for the treatment of neurological disorders. Many studies have demonstrated the ability of tFUS to elicit transient changes in neural responses. However, the ability of tFUS to induce sustained changes need to be carefully examined. In this study, we use the long-term potentiation/long term depression (LTP/LTD) model in the rat hippocampus, the medial perforant path (mPP) to dentate gyrus (DG) pathway, to explore whether tFUS is capable of encoding frequency specific information to induce plasticity. Single-element focused transducers were used for tFUS stimulation with ultrasound fundamental frequency of 0.5 MHz and nominal focal distance of 38 mm tFUS stimulation is directed to mPP. Measurement of synaptic connectivity is achieved through the slope of field excitatory post synaptic potentials (fEPSPs), which are elicited using bipolar electrical stimulation electrodes and recorded at DG using extracellular electrodes to quantify degree of plasticity. We applied pulsed tFUS stimulation with total duration of 5 min, with 5 levels of pulse repetition frequencies each administered at 50 Hz sonication frequency at the mPP. Baseline fEPSP is recorded 10 min prior, and 30+ minutes after tFUS administration. In N = 16 adult wildtype rats, we observed sustained depression of fEPSP slope after 5 min of tFUS focused at the presynaptic field mPP. Across all PRFs, no significant difference in maximum fEPSP slope change was observed, average tFUS induced depression level was observed at 19.6%. When compared to low frequency electrical stimulation (LFS) of 1 Hz delivered to the mPP, the sustained changes induced by tFUS stimulation show no statistical difference to LFS for up to 24 min after tFUS stimulation. When both the maximum depression effects and the duration of sustained effects are both taken into account, PRF 3 kHz can induce significantly larger effects than other PRFs tested. tFUS stimulation is measured with a spatial-peak pressure amplitude of 99 kPa, translating to an estimation of 0.43 °C temperature increase when assuming no loss of heat. The results suggest the ability of tFUS to encode sustained changes in synaptic connectivity through mechanism which are unlikely to involve thermal changes.


Subject(s)
Neuronal Plasticity , Perforant Pathway , Animals , Electric Stimulation/methods , Hippocampus/physiology , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Perforant Pathway/physiology , Rats
20.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35022233

ABSTRACT

Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.


Subject(s)
Cortical Synchronization/physiology , Hippocampus/physiology , Membrane Proteins/metabolism , Nerve Net/physiology , Nerve Tissue Proteins/metabolism , Synapses/physiology , Animals , CA3 Region, Hippocampal/metabolism , Dentate Gyrus/metabolism , Entorhinal Cortex/metabolism , Long-Term Potentiation , Membrane Proteins/deficiency , Mice, Knockout , Mossy Fibers, Hippocampal/metabolism , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Pseudopodia/metabolism , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL