Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters








Publication year range
1.
Antibiotics (Basel) ; 13(9)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39334985

ABSTRACT

Pseudomonas aeruginosa is a multidrug-resistant Gram-negative pathogen and one of the leading causes of ventilator-associated pneumonia and infections in patients with chronic obstructive pulmonary disease and cystic fibrosis. Murepavadin is a peptidomimetic that specifically targets outer-membrane lipopolysaccharide transport protein LptD of P. aeruginosa. In this study, we find that murepavadin enhances the bactericidal efficacy of ciprofloxacin. We further demonstrate that murepavadin increases intracellular accumulation of ciprofloxacin by suppressing drug efflux. In addition, the murepavadin-ciprofloxacin combination exhibits a synergistic bactericidal effect in an acute murine pneumonia model. In conclusion, our results identify an effective drug combination for the treatment of P. aeruginosa infections.

2.
Biomolecules ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785933

ABSTRACT

The problem of antimicrobial resistance is becoming a daunting challenge for human society and healthcare systems around the world. Hence, there is a constant need to develop new antibiotics to fight resistant bacteria, among other important social and economic measures. In this regard, murepavadin is a cyclic antibacterial peptide in development. The synthesis of murepavadin was undertaken in order to optimize the preparative protocol and scale-up, in particular, the use of new activation reagents. In our hands, classical approaches using carbodiimide/hydroxybenzotriazole rendered low yields. The use of novel carbodiimide and reagents based on OxymaPure® and Oxy-B is discussed together with the proper use of chromatographic conditions for the adequate characterization of peptide crudes. Higher yields and purities were obtained. Finally, the antimicrobial activity of different synthetic batches was tested in three Pseudomonas aeruginosa strains, including highly resistant ones. All murepavadin batches yielded the same highly active MIC values and proved that the chiral integrity of the molecule was preserved throughout the whole synthetic procedure.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Peptides, Cyclic , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/chemical synthesis , Antimicrobial Peptides/pharmacology , Carbodiimides/chemistry , Humans
3.
Antimicrob Agents Chemother ; 68(4): e0153923, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38470195

ABSTRACT

Murepavadin is a peptidomimetic that specifically targets the lipopolysaccharide transport protein LptD of Pseudomonas aeruginosa. Here, we found that murepavadin enhances the bactericidal efficacies of tobramycin and amikacin. We further demonstrated that murepavadin enhances bacterial respiration activity and subsequent membrane potential, which promotes intracellular uptake of aminoglycoside antibiotics. In addition, the murepavadin-amikacin combination displayed a synergistic bactericidal effect in a murine pneumonia model.


Subject(s)
Amikacin , Peptides, Cyclic , Pseudomonas Infections , Animals , Mice , Amikacin/pharmacology , Pseudomonas aeruginosa , Membrane Potentials , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Tobramycin/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Microbial Sensitivity Tests
4.
Antimicrob Agents Chemother ; 68(1): e0129823, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38092672

ABSTRACT

Murepavadin is a peptidomimetic exhibiting specific inhibitory activity against Pseudomonas species. In the present study, its in vitro activity was assessed on 230 cystic fibrosis (CF) strains of Pseudomonas aeruginosa isolated from 12 French hospitals, in comparison with 12 other antipseudomonal antibiotics. Although murepavadin is still in preclinical stage of development, 9.1% (n = 21) of strains had a minimum inhibitory concentration (MIC) >4 mg/L, a level at least 128-fold higher than the modal MIC value of the whole collection (≤0.06 mg/L). Whole-genome sequencing of these 21 strains along with more susceptible isogenic counterparts coexisting in the same patients revealed diverse mutations in genes involved in the synthesis (lpxL1 and lpxL2) or transport of lipopolysaccharides (bamA, lptD, and msbA), or encoding histidine kinases of two-component systems (pmrB and cbrA). Allelic replacement experiments with wild-type reference strain PAO1 confirmed that alteration of genes lpxL1, bamA, and/or pmrB can decrease the murepavadin susceptibility from 8- to 32-fold. Furthermore, we found that specific amino acid substitutions in histidine kinase PmrB (G188D, Q105P, and D45E) reduce the susceptibility of P. aeruginosa to murepavadin, colistin, and tobramycin, three antibiotics used or intended to be used (murepavadin) in aerosols to treat colonized CF patients. Whether colistin or tobramycin may select mutants resistant to murepavadin or the opposite needs to be addressed by clinical studies.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Colistin/pharmacology , Colistin/therapeutic use , Pseudomonas aeruginosa , Cystic Fibrosis/drug therapy , Respiratory Aerosols and Droplets , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/complications , Tobramycin/pharmacology , Mutation/genetics , Microbial Sensitivity Tests
5.
Microbiol Spectr ; : e0125723, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668398

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause a variety of acute and chronic infections. The bacterium is highly resistant to numerous antibiotics. Murepavadin is a peptidomimetic antibiotic that blocks the function of P. aeruginosa lipopolysaccharide (LPS) transport protein D (LptD), thus inhibiting the insertion of LPS into the outer membrane. In this study, we demonstrated that sublethal concentrations of murepavadin enhance the bacterial outer membrane permeability. Proteomic analyses revealed the alteration of protein composition in bacterial inner and outer membranes following murepavadin treatment. The antisigma factor MucA was upregulated by murepavadin. In addition, the expression of the sigma E factor gene algU and the alginate synthesis gene algD was induced by murepavadin. Deletion of the algU gene reduces bacterial survival following murepavadin treatment, indicating a role of the envelope stress response in bacterial tolerance. We further demonstrated that murepavadin enhances the bactericidal activities of ß-lactam antibiotics by promoting drug influx across the outer membrane. In a mouse model of acute pneumonia, the murepavadin-ceftazidime/avibactam combination showed synergistic therapeutic effect against P. aeruginosa infection. In addition, the combination of murepavadin with ceftazidime/avibactam slowed down the resistance development. In conclusion, our results reveal the response mechanism of P. aeruginosa to murepavadin and provide a promising antibiotic combination for the treatment of P. aeruginosa infections.IMPORTANCEThe ever increasing resistance of bacteria to antibiotics poses a serious threat to global public health. Novel antibiotics and treatment strategies are urgently needed. Murepavadin is a novel antibiotic that blocks the assembly of lipopolysaccharide (LPS) into the Pseudomonas aeruginosa outer membrane by inhibiting LPS transport protein D (LptD). Here, we demonstrated that murepavadin impairs bacterial outer membrane integrity, which induces the envelope stress response. We further found that the impaired outer membrane integrity increases the influx of ß-lactam antibiotics, resulting in enhanced bactericidal effects. In addition, the combination of murepavadin and a ß-lactam/ß-lactamase inhibitor mixture (ceftazidime/avibactam) slowed down the resistance development of P. aeruginosa. Overall, this study demonstrates the bacterial response to murepavadin and provides a new combination strategy for effective treatment.

6.
Front Immunol ; 12: 689410, 2021.
Article in English | MEDLINE | ID: mdl-34248979

ABSTRACT

Pseudomonas aeruginosa is a frequent cause of hospital-acquired wound infection and is difficult to treat because it forms biofilms and displays antibiotic resistance. Previous studies in mice demonstrated that mast cells (MCs) not only contribute to P. aeruginosa eradication but also promote wound healing via an unknown mechanism. We recently reported that host defense peptides (HDPs) induce human MC degranulation via Mas-related G protein-coupled receptor-X2 (MRGPRX2). Small molecule HDP mimetics have distinct advantages over HDPs because they are inexpensive to synthesize and display high stability, bioavailability, and low toxicity. Murepavadin is a lipidated HDP mimetic, (also known as POL7080), which displays antibacterial activity against a broad panel of multi-drug-resistant P. aeruginosa. We found that murepavadin induces Ca2+ mobilization, degranulation, chemokine IL-8 and CCL3 production in a human MC line (LAD2 cells) endogenously expressing MRGPRX2. Murepavadin also caused degranulation in RBL-2H3 cells expressing MRGPRX2 but this response was significantly reduced in cells expressing missense variants within the receptor's ligand binding (G165E) or G protein coupling (V282M) domains. Compound 48/80 induced ß-arrestin recruitment and promoted receptor internalization, which resulted in substantial decrease in the subsequent responsiveness to the MRGPRX2 agonist. By contrast, murepavadin did not cause ß-arrestin-mediated MRGPRX2 regulation. Murepavadin induced degranulation in mouse peritoneal MCs via MrgprB2 (ortholog of human MRGPRX2) and caused increased vascular permeability in wild-type mice but not in MrgprB2-/- mice. The data presented herein demonstrate that murepavadin activates human MCs via MRGPRX2 and murine MCs via MrgprB2 and that MRGPRX2 is resistant to ß-arrestin-mediated receptor regulation. Thus, besides its direct activity against P. aeruginosa, murepavadin may contribute to bacterial clearance and promote wound healing by harnessing MC's immunomodulatory property via the activation of MRGPRX2.


Subject(s)
Anti-Bacterial Agents/pharmacology , Mast Cells/drug effects , Nerve Tissue Proteins/immunology , Peptides, Cyclic/pharmacology , Receptors, G-Protein-Coupled/immunology , Receptors, Neuropeptide/immunology , Animals , Calcium/immunology , Cell Degranulation/drug effects , Cell Line , Cytokines/immunology , Female , Humans , Male , Mast Cells/immunology , Mice, Inbred C57BL , Mice, Knockout , Rats
8.
Article in English | MEDLINE | ID: mdl-31767727

ABSTRACT

The objective was to determine the in vitro antimicrobial susceptibility of Pseudomonas aeruginosa isolates cultured from cystic fibrosis (CF) patients and explore associations between strain sequence type and susceptibility. Fourteen antibiotics and antibiotic combinations, including the novel antibacterial peptide murepavadin, were tested for activity against 414 Pseudomonas aeruginosa isolates cultured from respiratory samples of CF patients. The complete genomes of the isolates were sequenced, and minimum spanning trees were constructed based on the sequence types (STs). Percentages of resistance according to CLSI 2019 breakpoints were as follows: cefepime, 14%; ceftazidime, 11%; ceftazidime-avibactam, 7%; ceftolozane-tazobactam, 3%; piperacillin-tazobactam, 12%; meropenem, 18%; imipenem, 32%; aztreonam, 23%; ciprofloxacin, 30%; gentamicin, 30%; tobramycin, 12%; amikacin, 18%; and colistin, 4%. Murepavadin MIC50 and MIC90 were 0.12 mg/liter and 2 mg/liter, respectively. There were no apparent clonal clusters associated with resistance, but higher MICs did appear to occur more often in STs with multiple isolates than in single ST isolates. In general, the CF isolates showed a wide genetic distribution. P. aeruginosa CF isolates exhibited the lowest resistance rates against ceftolozane-tazobactam, ceftazidime-avibactam, and colistin. Murepavadin demonstrated the highest activity on a per-weight basis and may therefore become a valuable addition to the currently available antibiotics for treatment of respiratory infection in people with CF.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Peptides, Cyclic/pharmacology , Pseudomonas aeruginosa/drug effects , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Pseudomonas Infections , Pseudomonas aeruginosa/genetics
9.
Article in English | MEDLINE | ID: mdl-31235628

ABSTRACT

Pseudomonas aeruginosa is a major bacterial pathogen associated with a rising prevalence of antibiotic resistance. We evaluated the resistance mechanisms of P. aeruginosa against POL7080, a species-specific, first-in-class antibiotic in clinical trials that targets the lipopolysaccharide transport protein LptD. We isolated a series of POL7080-resistant strains with mutations in the two-component sensor gene pmrB Transcriptomic and confocal microscopy studies support a resistance mechanism shared with colistin, involving lipopolysaccharide modifications that mitigate antibiotic cell surface binding.


Subject(s)
Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Peptides, Cyclic/pharmacology , Pseudomonas aeruginosa/drug effects , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/drug effects , Gene Expression Regulation, Bacterial/drug effects , Microbial Sensitivity Tests , Mutation , Pseudomonas aeruginosa/genetics , Transcription Factors/genetics
10.
Article in English | MEDLINE | ID: mdl-30642931

ABSTRACT

Murepavadin (POL7080) represents the first member of a novel class of outer membrane protein-targeting antibiotics. It specifically interacts with LptD and inhibits lipopolysaccharide (LPS) transport. Murepavadin is being developed for the treatment of serious infections by Pseudomonas aeruginosa We determined the plasma protein binding and the pharmacokinetics of murepavadin in plasma and epithelial lining fluid (ELF; pulmonary) in infected animals, and we determined the exposure-response relationship. Treatment of CD-1 neutropenic mice was started 2 h after infection using murepavadin at different dosing frequencies for 24 h, and the number of CFU per lung was determined. The sigmoid maximum-effect model was used to fit the dose-response, and the pharmacodynamic index (PDI) response was used to determine the PDI values, resulting in a static effect and 1-log kill reduction. Using R2 as an indicator of the best fit, the area under the concentration-time curve for the unbound fraction of the drug (fAUC)/MIC ratio correlated best with efficacy. The mean AUC required to provide a static effect was 36.83 mg h/liter (fAUC = 8.25 mg h/liter), and that to provide a 1-log reduction was 44.0 mg h/liter (fAUC = 9.86 mg h/liter). The mean static fAUC/MIC was determined to be 27.78, and that for a 1-log reduction was 39.85. These data may serve to determine doses in humans that are likely to be efficacious.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Neutropenia/drug therapy , Peptides, Cyclic/pharmacology , Peptides, Cyclic/pharmacokinetics , Pseudomonas Infections/drug therapy , Animals , Area Under Curve , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Cross Infection/drug therapy , Cross Infection/prevention & control , Disease Models, Animal , Mice , Microbial Sensitivity Tests , Neutropenia/microbiology , Pseudomonas aeruginosa/drug effects
11.
Article in English | MEDLINE | ID: mdl-30012756

ABSTRACT

This open-label, nonrandomized, single-dose, phase 1 study evaluated the pharmacokinetics and safety of murepavadin, a novel peptide antibiotic for the treatment of serious Pseudomonas aeruginosa infections. The study was conducted in 32 subjects of either sex in 4 groups (up to 8 per group) with mild (group 1), moderate (group 2), and severe (group 3) renal function impairment or with normal renal function (group 4). The degree of renal impairment of the subjects was classified at screening according to the estimated creatinine clearance (CLCr) according to the Cockcroft-Gault equation. All subjects received a single 2.2-mg/kg of body weight intravenous infusion of murepavadin administered over 3 h. Exposure to murepavadin in plasma increased in subjects with renal function impairment, with the area under the plasma concentration-time curve from zero to infinity (AUC0-∞) increasing about 2.0- to 2.5-fold for subjects with renal function impairment compared to subjects with normal renal function, whereas the increases in maximum observed plasma concentration (Cmax) were about 1.5-fold for subjects with renal function impairment compared to subjects with normal renal function. The total clearance (CL) of murepavadin was lower in all groups of subjects with renal function impairment, with group means ranging from 2.4 liters/h to 3.8 liters/h, compared to 7.0 liters/h in subjects with normal renal function. Accordingly, the terminal elimination half-life (t1/2) prolonged up to 24 h with decreasing renal function compared to 7.7 h in subjects with normal renal function. Murepavadin was well tolerated in all renal function groups. As the elimination of murepavadin is affected by renal function, a dose adjustment is warranted in subjects with impaired renal function. (This paper has been registered at ClinicalTrials.gov under identifier NCT02110459.).


Subject(s)
Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Peptides, Cyclic/adverse effects , Peptides, Cyclic/pharmacokinetics , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Renal Insufficiency/metabolism , Adult , Aged , Area Under Curve , Female , Humans , Kidney/metabolism , Male , Middle Aged , Pseudomonas Infections/metabolism
12.
Article in English | MEDLINE | ID: mdl-29686157

ABSTRACT

Murepavadin (formerly POL7080), a 14-amino-acid cyclic peptide, and comparators were tested by the broth microdilution method against 1,219 Pseudomonas aeruginosa isolates from 112 medical centers. Murepavadin (MIC50/90, 0.12/0.12 mg/liter) was 4- to 8-fold more active than colistin (MIC50/90, 1/1 mg/liter) and polymyxin B (MIC50/90, 0.5/1 mg/liter) and inhibited 99.1% of isolates at ≤0.5 mg/liter. Only 4 isolates (0.3%) exhibited murepavadin MICs of >2 mg/liter. Murepavadin was equally active against isolates from Europe, the United States, and China.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptides, Cyclic/pharmacology , Pseudomonas aeruginosa/drug effects , China , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Europe , Humans , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/isolation & purification , United States
13.
Article in English | MEDLINE | ID: mdl-29437621

ABSTRACT

Murepavadin is the first in class of the outer membrane protein-targeting antibiotics (OMPTA) and a pathogen-specific peptidomimetic antibacterial with a novel, nonlytic mechanism of action targeting Pseudomonas aeruginosa Murepavadin is being developed for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). The pharmacokinetics (PK) and safety of single and multiple doses of murepavadin were investigated in healthy male subjects. Part A of the study was a double-blind, randomized, placebo-controlled, single-ascending-dose investigation in 10 sequential cohorts where each cohort comprised 6 healthy male subjects; 4 subjects were randomized to murepavadin, and 2 subjects were randomized to placebo. Part B was a double-blind, randomized, placebo-controlled, multiple-ascending-dose investigation in 3 sequential cohorts. After a single dose of murepavadin, the geometric mean half-life (2.52 to 5.30 h), the total clearance (80.1 to 114 ml/h/kg), and the volume of distribution (415 to 724 ml/kg) were consistent across dose levels. The pharmacokinetics of the dosing regimens evaluated were dose proportional and linear. Murepavadin was well tolerated, adverse events were transient and generally mild, and no dose-limiting toxicity was identified.


Subject(s)
Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Peptides, Cyclic/adverse effects , Peptides, Cyclic/pharmacokinetics , Adult , Anti-Bacterial Agents/administration & dosage , Dose-Response Relationship, Drug , Double-Blind Method , Healthy Volunteers , Humans , Infusions, Intravenous , Male , Peptides, Cyclic/administration & dosage , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL