Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.119
Filter
1.
World J Clin Cases ; 12(22): 4913-4923, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39109030

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is classified under fibrotic interstitial pneumonia, characterized by a chronic and progressive course. The predominant clinical features of IPF include dyspnea and pulmonary dysfunction. AIM: To assess the effects of pirfenidone in the early treatment of IPF on lung function in patients. METHODS: A retrospective analysis was performed on 113 patients with IPF who were treated in our hospital from November 2017 to January 2023. These patients were divided into two groups: control group (n = 53) and observation group (n = 60). In the control group, patients received routine therapy in combination with methylprednisolone tablets, while those in the observation group received routine therapy together with pirfenidone. After applying these distinct treatment approaches to the two groups, we assessed several parameters, including the overall effectiveness of clinical therapy, the occurrence of adverse reactions (e.g., nausea, vomiting, and anorexia), symptom severity scores, pulmonary function index levels, inflammatory marker levels, and the 6-min walk distance before and after treatment in both groups. RESULTS: The observation group exhibited significantly higher rates than the control group after therapy, with a clear distinction (P < 0.05). After treatment, the observation group experienced significantly fewer adverse reactions than the control group, with a noticeable difference (P < 0.05). When analyzing the symptom severity scores between the two groups of patients after treatment, the observation group had significantly lower scores than the control group, with a distinct difference (P < 0.05). When comparing the pulmonary function index levels between the two groups of patients after therapy, the observation group displayed significantly higher levels than the control group, with a noticeable difference (P < 0.05). Evaluating the inflammatory marker data (C-reactive protein, interleukin-2 [IL-2], and IL-8) between the two groups of patients after therapy, the observation group exhibited significantly lower levels than the control group, with significant disparities (P < 0.05). Comparison of the 6-min walking distance data between the two groups of patients after treatment showed that the observation group achieved significantly greater distances than the control group, with a marked difference (P < 0.05). CONCLUSION: Prompt initiation of pirfenidone treatment in individuals diagnosed with IPF can enhance pulmonary function, elevate inflammatory factor levels, and increase the distance covered in the 6-min walk test. This intervention is conducive to effectively decreasing the occurrence of adverse reactions in patients.

2.
Eur J Radiol ; 179: 111651, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39128249

ABSTRACT

BACKGROUND: Usual interstitial pneumonia (UIP) cases without honeycombing (possible UIP) included various CT features and was often difficult to diagnose. PURPOSE: This study aimed to classify the cases with possible UIP on CT features using cluster analysis and evaluate the features of subsets of participants and the correlation of prognosis. MATERIALS AND METHODS: The study included 85 patients with possible UIP in the 2011 idiopathic pulmonary fibrosis (IPF) guideline with radiological diagnosis. All cases underwent surgical biopsies and were diagnosed by multidisciplinary discussion (MDD) from the nationwide registry in Japan. The readers evaluated pulmonary opacity, nodules, cysts, and predominant distribution which were reclassified by IPF guidelines in 2018. Additionally, cases were classified into four groups by cluster analysis based on CT findings. The differences in survival among IPF classification and the clusters were evaluated. RESULTS: Cases were diagnosed as IPF (n = 55), NSIP (n = 4), unclassifiable (n = 23), and others (n = 3) by MDD. Cluster analysis revealed 4 clusters by CT features (n = 47, 16, 19 and 3, respectively). Cluster 1 had fewer lesions overall. Cluster 2 have many pure ground-glass opacities and ground-glass opacities with reticulation. Cluster 3 had many reticular opacities and nodules with few lower predominant distributions. Cluster 4 was characterized by peribronchovascular consolidation.The mean survival time of cluster 1 (4518 days) was significantly better than cluster 2, 3, and 4 (1843, 2196, and 1814 days, respectively) (p = 0.03). CONCLUSION: In conclusion, UIP without honeycombing included various CT patterns and MDD diagnoses. Significangly differences in prognosis were observed among clusters classified by CT findings.

3.
Front Immunol ; 15: 1444964, 2024.
Article in English | MEDLINE | ID: mdl-39131154

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lung disease that worsens over time, causing fibrosis in the lungs and ultimately resulting in respiratory failure and a high risk of death. Macrophages play a crucial role in the immune system, showing flexibility by transforming into either pro-inflammatory (M1) or anti-inflammatory (M2) macrophages when exposed to different stimuli, ultimately impacting the development of IPF. Recent research has indicated that the polarization of macrophages is crucial in the onset and progression of IPF. M1 macrophages secrete inflammatory cytokines and agents causing early lung damage and fibrosis, while M2 macrophages support tissue healing and fibrosis by releasing anti-inflammatory cytokines. Developing novel treatments for IPF relies on a thorough comprehension of the processes involved in macrophage polarization in IPF. The review outlines the regulation of macrophage polarization and its impact on the development of IPF, with the goal of investigating the possible therapeutic benefits of macrophage polarization in the advancement of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Macrophage Activation , Macrophages , Humans , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophage Activation/immunology , Animals , Cytokines/metabolism , Lung/immunology , Lung/pathology
4.
Mitochondrion ; 78: 101943, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122226

ABSTRACT

Silicosis is an occupational disease of the lungs brought in by repeated silica dust exposures. Inhalation of crystalline silica leads to persistent lung inflammation characterized by lung lesions due to granuloma formation. The specific molecular mechanism has not yet been identified, though. The Present study investigated the impact of silica-exposed lung fibrosis and probable molecular mechanisms. Here, Curcumin, derived from Curcuma longa shown to be an effective anti-inflammatory and anti-fibrotic molecule has been taken to investigate its therapeutic efficacy in silica-induced lung fibrosis. An experimental model of silicosis was established in mice where curcumin was administered an hour before intranasal silica exposure every alternate day for 35 days. Intranasal Curcumin treatment reduced silica-induced oxidative stress, inflammation marked by inflammatory cell recruitment, and prominent granuloma nodules along with aberrant collagen repair. Its protective benefits were confirmed by reduced MMP9 activities along with EMT markers (Vimentin and α-SMA). It has restored autophagy and suppressed the deposition of damaged mitochondria after silica exposure. Intranasal Curcumin also inhibited oxidative stress by boosting antioxidant enzyme activities and enhanced Nrf2-Keap1 expressions. Higher levels of PINK1, PARKIN, Cyt-c, P62/SQSTM, and damaged mitochondria in the silicosis group were significantly lowered after curcumin and dexamethasone treatments. Curcumin-induced autophagy resulted in reduced silica-induced mitochondria-dependent apoptosis. We report that intranasal curcumin treatment showed protective properties on pathological features prompted by silica particles, suggesting that the compound may constitute a promising strategy for the treatment of silicosis in the near future.

5.
Respirology ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129185

ABSTRACT

BACKGROUND AND OBJECTIVE: There are few studies that have used inspiratory muscle training (IMT) as an intervention for patients with isolated idiopathic pulmonary fibrosis (IPF). This study aimed to investigate and interpret the effects of home-based telerehabilitation-assisted IMT in patients with IPF. METHODS: Twenty-eight participants with IPF took part in the study. Lung function tests, functional exercise capacity by 6-min walk distance (6MWD), dyspnoea perception by modified medical research council dyspnoea scale (mMRC), and inspiratory muscle strength by maximal inspiratory pressure (MIP) were assessed. IMT was performed twice a day, 7 days/week, for 8 weeks. The intervention group (n = 14) performed IMT at 50% of their baseline MIP while the control group (n = 14) performed IMT without applied resistance. Loading intensity was progressed by keeping the load at 4-6 on a modified Borg scale for the highest tolerable perceived respiratory effort for each patient. RESULTS: Dyspnoea based on mMRC score (p < 0.001, η2 effect size = 0.48) significantly decreased within the intervention group compared with the control group. There were significant increases in the intervention group compared to the control group based on 6MWD (p < 0.001, η2 effect size = 0.43), MIP (p = 0.006, η2 effect size = 0.25) and MIP % predicted (p = 0.008, η2 effect size = 0.25). CONCLUSION: The findings of this study suggest that an 8-week home-based telerehabilitation-assisted IMT intervention produced improvements in inspiratory muscle strength, leading to improvements in functional exercise capacity and dyspnoea.

6.
Article in English | MEDLINE | ID: mdl-39133466

ABSTRACT

RATIONALE: Some with interstitial lung abnormalities (ILA) have suspected interstitial lung disease (ILD), a subgroup with adverse outcomes. Rates of development and progression of suspected ILD and their effect on mortality are unknown. OBJECTIVES: To determine rates of development and progression of suspected ILD and assess effects of individual ILD and progression criteria on mortality. METHODS: Participants from COPDGene were included. ILD was defined as ILA and fibrosis and/or FVC <80% predicted. Prevalent ILD was assessed at enrollment, incident ILD and progression at 5-year follow-up. CT progression was assessed visually and FVC decline as relative change. Multivariable Cox regression tested associations between mortality and ILD groups. RESULTS: Of 9,588 participants at enrollment, 267 (2.8%) had prevalent ILD. Those with prevalent ILD had 52% mortality after median 10.6 years, which was higher than ILA (33%; HR=2.0; p<0.001). The subgroup of prevalent ILD with fibrosis only had worse mortality (59%) than ILA (HR=2.2; p<0.001). 97 participants with prevalent ILD completed 5-year follow-up: 32% had stable CT and relative FVC decline <10%, 6% FVC decline ≥10% only, 39% CT progression only, and 22% both CT progression and FVC decline ≥10%. Mortality rates were 32%, 50%, 45%, and 46% respectively; those with CT progression only had worse mortality than ILA (HR=2.6; p=0.005). At 5-year follow-up, incident ILD occurred in 168/4,843 participants without prevalent ILD and had worse mortality than ILA (HR=2.5; p<0.001). CONCLUSION: Rates of mortality and progression are high among those with suspected ILD in COPDGene; fibrosis and radiologic progression are important predictors of mortality.

7.
Article in English | MEDLINE | ID: mdl-39137317

ABSTRACT

RATIONALE: Relatives of patients with familial pulmonary fibrosis (FPF) are at increased risk to develop FPF. Interstitial lung abnormalities (ILAs) are a radiologic biomarker of subclinical disease, but the implications of very mild abnormalities remain unclear. OBJECTIVES: To quantify the progression risk among FPF relatives with abnormalities below the threshold for ILAs as described by the Fleischner Society and to describe the characteristics of participants with new or progressive ILAs during observation. METHODS: Asymptomatic FPF relatives undergo serial screening high-resolution chest CT (HRCT). For this analysis, Early ILAs (no minimum threshold of lung involvement) were sub-classified as Mild (all interstitial abnormalities involve <5% of a lung zone) or Moderate (any abnormality involves >5%). Identification of new or progressive ILAs on HRCT, or development of Pulmonologist-diagnosed clinical FPF were defined as progression. Covariate-adjusted logistic regression identified progression-associated characteristics. MEASUREMENTS AND MAIN RESULTS: From 2008-2023, 273 participants in follow-up procedures were 53.2 9.4 years old at enrollment, 95 (35%) were male, and 73/268 (27%) were ever-smokers. During a mean follow-up of 6.2 3.0 years, progression occurred among 31/211 (15%) of those with absence of ILAs at enrollment, 32/49 (65%) of Mild ILAs, and 10/13 (77%) of Moderate ILAs. Mild ILAs had 9.15 (95% CI 4.40-19.00, p<0.0001) times and Moderate ILAs had 17.14 (95% CI 4.42-66.49, p<0.0001) times the odds of progression as subjects without ILAs. CONCLUSIONS: In persons at-risk for FPF, minor interstitial abnormalities, including reticulation that is unilateral or involves <5% of a lung zone, frequently represent subclinical disease.

8.
Article in English | MEDLINE | ID: mdl-39137526

ABSTRACT

Integrative multiomics can help elucidate the pathophysiology of pulmonary fibrosis (PF) associated pulmonary hypertension (PH) (PF-PH). Weighted gene co-expression network analysis (WGCNA) was performed on a transcriptomic dataset of explanted lung tissue from 116 patients with PF. Patients were stratified by pulmonary vascular resistance (PVR) and differential gene expression analysis was conducted. Gene modules were correlated with hemodynamics at the time of transplantation and tested for enrichment in the lung transcriptomics signature of an independent pulmonary arterial hypertension (PAH) cohort. We found 1,250 differentially expressed genes between high and low PVR groups. WGCNA identified that black and yellowgreen modules negatively correlated with PVR, while the tan and darkgrey modules positively correlated with PVR. Additionally, the tan module showed the strongest enrichment for an independent PAH gene signature, suggesting shared gene expression patterns between PAH and PF-PH. Pharmacotranscriptomic analysis using the Connectivity Map implicated the tan and darkgrey modules as potentially pathogenic in PF-PH, given their combined module signature demonstrated a high negative connectivity score for Treprostinil, a medication used in the treatment of PF-PH, and a high positive connectivity score for Bone morphogenetic protein loss of function. Pathway enrichment analysis revealed that inflammatory pathways and oxidative phosphorylation were downregulated, whereas epithelial mesenchymal transition was upregulated in modules associated with increased PVR. Our integrative systems biology approach to the lung transcriptome of PF with and without PH identified several PH-associated co-expression modules and gene targets with shared molecular features with PAH warranting further investigation to uncover potential new therapies for PF-PH.

9.
Int Immunopharmacol ; 141: 112920, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137631

ABSTRACT

Pulmonary fibrosis (PF) results from excessive extracellular matrix (ECM) deposition and tissue remodeling after activation of fibroblasts into myofibroblasts. Abnormally deposited fibrotic ECM, in turn, promotes fibroblast activation and accelerates loss of lung structure and function. However, the molecular mediators and exact mechanisms by which fibrotic ECM promotes fibroblast activation are unclear. In a bleomycin-induced PF mouse model, we found Galectin-1 (Gal-1) expression was significantly increased in lung tissue, and overexpression of Gal-1 plasmid-transfected fibroblasts were activated into myofibroblasts. Using the decellularization technique to prepare decellularized fibrotic ECM and constructing a 3D in vitro co-culture system with fibroblasts, we found that decellularized fibrotic ECM induced a high expression of Gal-1 and promoted the activation of fibroblasts into myofibroblasts. Therefore, Gal-1 has been identified as a pivotal mediator in PF. Further, we found that decellularized fibrotic ECM delivered mechanical signals to cells through the Gal-1-mediated FAK-Src-P130Cas mechanical signalling pathway, while the CYP450 enzymes (mainly involved in CYP1A1, CYP24A1, CYP3A4, and CYP2D6 isoforms) acted as a chemical signalling pathway to receive mechanical signals transmitted from upstream Gal-1, thereby promoting fibroblast activation. The Gal-1 inhibitor OTX008 or the CYP1A1 inhibitor 7-Hydroxyflavone prevented PF in mice and inhibited the role of fibrotic ECM in promoting fibroblast activation into myofibroblasts, preventing PF. These results reveal novel molecular mechanisms of lung fibrosis formation and identify Gal-1 and its downstream CYP1A1 as potential therapeutic targets for PF disease treatmnts.

10.
Phytomedicine ; 133: 155933, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39121537

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) is a progressive and severe respiratory disease for which there is still a lack of satisfactory treatment methods other than lung transplantation. Evening primrose (EP) is widely used in Chinese folk medicinal herbs, especially for the treatment of lung-related diseases. However, the protective effect of evening primrose against PF has yet to be reported. PURPOSE: This study explores the pharmacological effect of EP and its possible active components against PF from the perspectives of lung function, histopathological staining, and molecular biology assays. METHODS: Establishing a rat pulmonary fibrosis model using bleomycin to detect lung function, pathological changes, and collagen deposition. TGF-ß1 was used to establish an in vitro model of PF in BEAS-2B cells, and the active ingredients in evening primrose were screened. Then, the therapeutic effects of 1-Oxohederagenin (C1) and remangilone C (C2) derived from EP were observed in an in vivo model of bleomycin-induced PF, and the differentially expressed genes between the C1 and C2 treatment groups and the model group were screened with transcriptome sequencing. Finally, TGF-ß1-induced damage to HFL1 cell was used to explore the specific mechanisms by which C1 and C2 alleviate PF and the involvement of ß-catenin signaling. RESULTS: Evening primrose extract showed some ameliorative effects on bleomycin-induced PF in rats, manifested as reduced pathological damage and reduced collagen deposition. The chemical components of C1 and C2 potently ameliorated BLM-induced PF in animals and effectively inhibited fibroblast activation by interfering with ß-catenin signaling. CONCLUSION: Evening primrose extract has certain ameliorative effects on PF. In addation, C1 and C2 might be related with the suppression of fibroblast activation by inhibiting ß-catenin signaling.

11.
Diagnostics (Basel) ; 14(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125526

ABSTRACT

BACKGROUND: Monitoring the progression of idiopathic pulmonary fibrosis (IPF) using CT primarily focuses on assessing the extent of fibrotic lesions, without considering the distortion of lung architecture. OBJECTIVES: To evaluate three-dimensional average displacement (3D-AD) quantification of lung structures using deformable registration of serial CT images as a parameter of local lung architectural distortion and predictor of IPF prognosis. MATERIALS AND METHODS: Patients with IPF evaluated between January 2016 and March 2017 who had undergone CT at least twice were retrospectively included (n = 114). The 3D-AD was obtained by deformable registration of baseline and follow-up CT images. A computer-aided quantification software measured the fibrotic lesion volume. Cox regression analysis evaluated these variables to predict mortality. RESULTS: The 3D-AD and the fibrotic lesion volume change were significantly larger in the subpleural lung region (5.2 mm (interquartile range (IQR): 3.6-7.1 mm) and 0.70% (IQR: 0.22-1.60%), respectively) than those in the inner region (4.7 mm (IQR: 3.0-6.4 mm) and 0.21% (IQR: 0.004-1.12%), respectively). Multivariable logistic analysis revealed that subpleural region 3D-AD and fibrotic lesion volume change were independent predictors of mortality (hazard ratio: 1.12 and 1.23; 95% confidence interval: 1.02-1.22 and 1.10-1.38; p = 0.01 and p < 0.001, respectively). CONCLUSIONS: The 3D-AD quantification derived from deformable registration of serial CT images serves as a marker of lung architectural distortion and a prognostic predictor in patients with IPF.

12.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125585

ABSTRACT

Acute respiratory distress syndrome (ARDS) occurs as an acute onset condition, and patients present with diffuse alveolar damage, refractory hypoxemia, and non-cardiac pulmonary edema. ARDS progresses through an initial exudative phase, an inflammatory phase, and a final fibrotic phase. Pirfenidone, a powerful anti-fibrotic agent, is known as an agent that inhibits the progression of fibrosis in idiopathic pulmonary fibrosis. In this study, we studied the treatment efficiency of pirfenidone on lipopolysaccharide (LPS) and bleomycin-induced ARDS using rats. The ARDS rat model was created by the intratracheal administration of 3 mg/kg LPS of and 3 mg/kg of bleomycin dissolved in 0.2 mL of normal saline. The pirfenidone treatment group was administered 100 or 200 mg/kg of pirfenidone dissolved in 0.5 mL distilled water orally 10 times every 2 days for 20 days. The administration of LPS and bleomycin intratracheally increased lung injury scores and significantly produced pro-inflammatory cytokines. ARDS induction increased the expressions of transforming growth factor (TGF)-ß1/Smad-2 signaling factors. Additionally, matrix metalloproteinase (MMP)-9/tissue inhibitor of metalloproteinase (TIMP)-1 imbalance occurred, resulting in enhanced fibrosis-related factors. Treatment with pirfenidone strongly suppressed the expressions of TGF-ß1/Smad-2 signaling factors and improved the imbalance of MMP-9/TIMP-1 compared to the untreated group. These effects led to a decrease in fibrosis factors and pro-inflammatory cytokines, promoting the recovery of damaged lung tissue. These results of this study showed that pirfenidone administration suppressed inflammation and fibrosis in the ARDS animal model. Therefore, pirfenidone can be considered a new early treatment for ARDS.


Subject(s)
Bleomycin , Lipopolysaccharides , Pyridones , Respiratory Distress Syndrome , Signal Transduction , Animals , Pyridones/pharmacology , Pyridones/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/chemically induced , Signal Transduction/drug effects , Rats , Male , Bleomycin/adverse effects , Tissue Inhibitor of Metalloproteinase-1/metabolism , Smad2 Protein/metabolism , Rats, Sprague-Dawley , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Disease Models, Animal , Matrix Metalloproteinase 9/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Smad Proteins/metabolism
13.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125962

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Precision Medicine/methods , Molecular Targeted Therapy/methods , Epigenesis, Genetic , Animals
14.
Ther Adv Respir Dis ; 18: 17534666241266343, 2024.
Article in English | MEDLINE | ID: mdl-39113425

ABSTRACT

In a patient with interstitial lung disease (ILD) of known or unknown etiology other than idiopathic pulmonary fibrosis (IPF), progressive pulmonary fibrosis (PPF) is defined by worsening lung fibrosis on high-resolution computed tomography (HRCT), decline in lung function, and/or deterioration in symptoms. The INBUILD trial involved 663 patients with PPF who were randomized to receive nintedanib or placebo. The median exposure to trial medication was approximately 19 months. The INBUILD trial provided valuable learnings about the course of PPF and the efficacy and safety of nintedanib. The relative effect of nintedanib on reducing the rate of forced vital capacity decline was consistent across subgroups based on ILD diagnosis, HRCT pattern, and disease severity at baseline, and between patients who were and were not taking glucocorticoids or disease-modifying anti-rheumatic drugs and/or glucocorticoids at baseline. The adverse events most frequently associated with nintedanib were gastrointestinal, particularly diarrhea, but nintedanib was discontinued in only a minority of cases. The results of the INBUILD trial highlight the importance of prompt detection and treatment of PPF and the utility of nintedanib as a treatment option.


What did we find out from the INBUILD trial about progressive lung fibrosis?Lung fibrosis is a rare disease in which the lung tissue becomes scarred and hardened. This makes it more difficult for the lungs to inflate and for the lungs to exchange oxygen with the blood. In some patients, lung fibrosis gets worse over time. This is known as progressive lung fibrosis. In the INBUILD trial, researchers looked at the effects of a drug called nintedanib in patients with progressive lung fibrosis. In this trial, 663 patients were randomly allocated to receive either nintedanib or a placebo and then followed for approximately 19 months. The patients and the researchers did not know which patients were taking the active drug (nintedanib) and which patients were taking placebo. The results showed that the criteria used to find patients with progressive lung fibrosis to take part in the trial successfully identified patients whose disease would continue to worsen. These criteria were based on a decline in the volume (size) of the lungs, worsening symptoms such as shortness of breath, and worsening of changes seen on a scan of the chest. The trial results also showed that nintedanib slowed down loss of lung function and had a similar benefit in patients with different severities of disease at the start of the trial. The most common side-effects of nintedanib were gastrointestinal problems, particularly diarrhea, but most patients given nintedanib were able to cope with these side-effects without needing to stop treatment. Large trials like the INBUILD trial are important for helping us understand how diseases progress and in which patients particular drugs should be used.


Subject(s)
Disease Progression , Indoles , Pulmonary Fibrosis , Tomography, X-Ray Computed , Humans , Indoles/adverse effects , Indoles/therapeutic use , Indoles/administration & dosage , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/physiopathology , Vital Capacity , Severity of Illness Index , Treatment Outcome , Randomized Controlled Trials as Topic , Glucocorticoids/administration & dosage , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Lung/drug effects , Lung/physiopathology , Lung/diagnostic imaging , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/physiopathology , Lung Diseases, Interstitial/diagnosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/physiopathology , Idiopathic Pulmonary Fibrosis/diagnosis , Male , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage
15.
Biochem Biophys Res Commun ; 737: 150495, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126861

ABSTRACT

This study aimed to investigate the potential of mesenchymal stem cells (MSCs) in alleviating diabetic lung injury by decreasing inflammation, fibrosis and recovering tissue macrophage homeostasis. To induce pulmonary injuries in an in vivo murine model, we utilized a streptozotocin (STZ), and high-fat diet (HFD) induced diabetic C57 mouse model. Subsequently, human umbilical cord-derived MSCs (hUC-MSCs) were administered through the tail vein on a weekly basis for a duration of 4 weeks. In addition, in vitro experiments involved co-culturing of isolated primary abdominal macrophages from diabetic mice and high glucose-stimulated MLE-12 cells with hUC-MSCs. The objective was to evaluate if hUC-MSCs co-culturing could effectively mitigate cell inflammation and fibrosis. Following hUC-MSCs injection, diabetic mice displayed enhanced pulmonary functional parameters, reduced pulmonary fibrosis, and diminished inflammation. Notably, the dynamic equilibrium of lung macrophages shifted from the M1 phenotype to the M2 phenotype, accompanied by a notable reduction in various indicators associated with inflammation and fibrosis. Results from cell co-culturing experiments further supported this trend, demonstrating a reduction in inflammatory and fibrotic indicators. In conclusion, our findings suggest that hUC-MSCs treatment holds promise in mitigating diabetic pulmonary injury by significantly reducing inflammation, fibrosis and maintain tissue macrophage homeostasis within the lungs. This study sheds light on the therapeutic potential of hUC-MSCs in managing diabetic complications affecting the pulmonary system.

16.
Postgrad Med ; 136(5): 567-576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39109519

ABSTRACT

BACKGROUND: This study aimed to investigate the association between sex hormones and the risk of pulmonary fibrosis by conducting a meta-analysis of previously published studies. METHODS: We executed a comprehensive search of the PubMed, Embase, Cochrane Library, and Web of Science databases to locate pertinent studies published up to April 2024. We included studies that reported the association between sex hormones and the risk of pulmonary fibrosis. Standardized mean difference (SMD) with 95% confidence intervals (CIs) were calculated using a random-effects model. RESULTS: A total of 10 articles, encompassing 1371 patients, were finally incorporated in this meta-analysis. Based on the evaluation of the included studies, it was observed that the levels of dehydroepiandrosterone sulfate (DHEA-S) (pooled SMD: -0.72, 95% CI: -1.21 to -0.24, p < 0.001), testosterone (pooled SMD: -1.25, CI: -2.39 and -0.11, p < 0.001) and estrogen (pooled SMD: -0.56, 95% CI: -0.96 to -0.15, p < 0.001) were significantly lower in patients with pulmonary fibrosis, whereas the levels of luteinizing hormone (LH) remained unaffected. Publication bias was ruled out through funnel plots. CONCLUSION: This meta-analysis indicates that reduced levels of DHEA-S, testosterone, estrogen may serve as potential risk factors for pulmonary fibrosis. There is a pressing need for additional studies to confirm this association and explore the underlying biological mechanisms. Clinicians should recognize the potential influence of sex hormones in the etiology of pulmonary fibrosis and consider this aspect during the patient management process.


Subject(s)
Dehydroepiandrosterone Sulfate , Gonadal Steroid Hormones , Pulmonary Fibrosis , Testosterone , Humans , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/epidemiology , Dehydroepiandrosterone Sulfate/blood , Gonadal Steroid Hormones/blood , Testosterone/blood , Estrogens/blood , Luteinizing Hormone/blood , Female , Male
17.
Int J Mol Med ; 54(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39129313

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T­cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression in vitro inhibited the secretion of fibrosis­related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage­induced epithelial­to­mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors in vivo enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both in vitro and in vivo. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression in vivo can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Janus Kinase 2 , Macrophages , Osteopontin , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Macrophages/metabolism , Humans , Animals , Male , Mice , Osteopontin/metabolism , Osteopontin/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Mice, Inbred C57BL , Middle Aged
18.
Int Immunopharmacol ; 140: 112803, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094357

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) leads to excessive deposition of fibrous connective tissue in the lungs, increasing the risk of lung cancer due to the enhanced activity of fibroblasts (FBs). Fibroblast-mediated collagen fiber deposition creates a tumor-like microenvironment, laying the foundation for tumorigenesis. Clinically, numerous cases of lung cancer induced by pulmonary fibrosis have been observed. In recent years, the study of nucleotide point mutations, which provide more detailed insights than gene expression, has made significant advancements, offering new perspectives for clinical research. METHODS: We initially employed Mendelian randomization to ascertain that the initial stage of lung cancer induced by PF belongs to small cell lung cancer (SCLC). Subsequently, pulmonary neuroendocrine cells (PNECs) were identified by using pseudo-time series analysis as cell clusters with carcinogenic potential. We categorized FBs into four groups according to their cellular metabolism, and then analyzed the cellular communication between FBs and PNECs, as well as changes in intracellular pathways of PNECs. Additionally, we examined the characteristic genome of FBs which is significantly associated with PF and investigated the impact of FBs on immune cells in the PF microenvironment. Finally, we explored strategies for preventing the progression from PF to lung cancer. RESULTS: The genetic features of cells with carcinogenic potential in PF tissues were revealed, characterized by upregulation of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), Homeobox B2 (HOXB2), Teashirt Zinc Finger Homeobox 2 (TSHZ2), Insulinoma-associated 1 (INSM1), and reduced activity of RE1 Silencing Transcription Factor (REST). FBs characterized by high glycolysis and low tricarboxylic acid (TCA) cycling played a key role in the progression of PF. The microenvironment of PF resembles the tumor microenvironment, providing a conducive immunosuppressive environment for the occurrence of cancer cells. In dendritic cells, rs9265808 is a susceptibility locus for progression from pulmonary fibrosis to lung cancer, mutations at this locus increase the expression of Complement Factor B (CFB), and excessive activation of the complement pathway is a crucial factor leading to lung cancer development in patients with pulmonary fibrosis. Ensuring adequate nutritional supply and physical function is one of the effective measures to prevent progression from pulmonary fibrosis to lung cancer. CONCLUSION: CFB promotes lung cancer occurrence by inducing the accumulation and polarization of a large number of monocytes/macrophages in the lungs, driving disease progression by reducing the physical fitness of patients with pulmonary fibrosis.

19.
Int J Infect Dis ; : 107193, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094763

ABSTRACT

OBJECTIVES: The impact of anti-fibrotic medications on pulmonary fibrosis caused by COVID-19 remains inconclusive and lacks systematic investigation. This study assessed the efficacy of anti-fibrotic drugs in addressing post-COVID-19 lung fibrosis. METHODS: We searched PubMed, Web of Science, Embase, and the Cochrane Library until June 15, 2024. The meta-analysis was performed using Review Manager. Heterogeneity was evaluated utilizing I2 statistic, and publication bias was assessed via funnel plots. RESULTS: The study (CRD42024552847) included 7 trials with 496 participants. No significant differences were observed in chest CT score (SMD= -0.60, 95% CI: -1.33 to 0.12, P= 0.10), length of hospital stay (MD= -1.34, 95% CI: -4.39 to 1.70, P= 0.39), and mortality (OR= 0.91, 95% CI: 0.50 to 1.64, P= 0.75) between anti-fibrosis and standard treatment groups. Notable improvements in pulmonary function were observed with anti-fibrotic drugs, as indicated by FEV1%pred (MD= 23.95, 95% CI: 12.24 to 35.67, P< 0.0001) and FEV1/FVC (MD= 18.17, 95% CI: 11.96 to 24.38, P< 0.00001). CONCLUSIONS: Anti-fibrotic medications may help reduce fibrotic lesions and improve pulmonary function in post-COVID-19 pulmonary fibrosis, but their practical use is currently based more on theory than on solid medical evidence. Currently, in clinical practice, the use of anti-fibrotic drugs in these patients primarily relies on empirical treatment. Further clinical studies are imperative to bolster its credibility for future applications.

20.
Lipids Health Dis ; 23(1): 237, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090671

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a respiratory disorder of obscure etiology and limited treatment options, possibly linked to dysregulation in lipid metabolism. While several observational studies suggest that lipid-lowering agents may decrease the risk of IPF, the evidence is inconsistent. The present Mendelian randomization (MR) study aims to determine the association between circulating lipid traits and IPF and to assess the potential influence of lipid-modifying medications for IPF. METHODS: Summary statistics of 5 lipid traits (high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglyceride, apolipoprotein A, and apolipoprotein B) and IPF were sourced from the UK Biobank and FinnGen Project Round 10. The study's focus on lipid-regulatory genes encompassed PCSK9, NPC1L1, ABCG5, ABCG8, HMGCR, APOB, LDLR, CETP, ANGPTL3, APOC3, LPL, and PPARA. The primary effect estimates were determined using the inverse-variance-weighted method, with additional analyses employing the contamination mixture method, robust adjusted profile score, the weighted median, weighted mode methods, and MR-Egger. Summary-data-based Mendelian randomization (SMR) was used to confirm significant lipid-modifying drug targets, leveraging data on expressed quantitative trait loci in relevant tissues. Sensitivity analyses included assessments of heterogeneity, horizontal pleiotropy, and leave-one-out methods. RESULTS: There was no significant effect of blood lipid traits on IPF risk (all P>0.05). Drug-target MR analysis indicated that genetic mimicry for inhibitor of NPC1L1, PCSK9, ABCG5, ABCG8, and APOC3 were associated with increased IPF risks, with odds ratios (ORs) and 95% confidence intervals (CIs) as follows: 2.74 (1.05-7.12, P = 0.039), 1.36 (1.02-1.82, P = 0.037), 1.66 (1.12-2.45, P = 0.011), 1.68 (1.14-2.48, P = 0.009), and 1.42 (1.20-1.67, P = 3.17×10-5), respectively. The SMR method identified a significant association between PCSK9 gene expression in whole blood and reduced IPF risk (OR = 0.71, 95% CI: 0.50-0.99, P = 0.043). Sensitivity analyses showed no evidence of bias. CONCLUSIONS: Serum lipid traits did not significantly affect the risk of idiopathic pulmonary fibrosis. Drug targets MR studies examining 12 lipid-modifying drugs indicated that PCSK9 inhibitors could dramatically increase IPF risk, a mechanism that may differ from their lipid-lowering actions and thus warrants further investigation.


Subject(s)
Cholesterol, HDL , Cholesterol, LDL , Idiopathic Pulmonary Fibrosis , Mendelian Randomization Analysis , Proprotein Convertase 9 , Triglycerides , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/blood , Proprotein Convertase 9/genetics , Triglycerides/blood , Cholesterol, LDL/blood , Cholesterol, HDL/blood , Apolipoproteins B/genetics , Apolipoproteins B/blood , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Membrane Transport Proteins/genetics , Hypolipidemic Agents/therapeutic use , Angiopoietin-like Proteins/genetics , Angiopoietin-Like Protein 3 , Cholesterol Ester Transfer Proteins/genetics , Polymorphism, Single Nucleotide , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Female , Lipoprotein Lipase , Apolipoprotein B-100 , Hydroxymethylglutaryl CoA Reductases , Receptors, LDL , Apolipoprotein C-III
SELECTION OF CITATIONS
SEARCH DETAIL