Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.310
Filter
2.
Brain ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990981

ABSTRACT

Both sleep alterations and epileptiform activity are associated with the accumulation of amyloid-ß and tau pathology and are currently investigated for potential therapeutic interventions in Alzheimer's disease (AD). However, a bidirectional intertwining relation between sleep and neuronal hyperexcitability might modulate the effects of AD pathology on the corresponding associations. To investigate this, we performed multiple day simultaneous foramen ovale (FO) plus scalp EEG and polysomnography (PSG) recordings and acquired 18F-MK6240 tau PET-MR in three patients in the prodromal stage of AD and in two patients with mild and moderate dementia due to AD, respectively. As an eligibility criterion for the present study, subjects either had a history of a recent seizure (n = 2) or subclinical epileptiform activity (SEA) on a previous scalp EEG taken in a research context (n = 3). The 18F-MK6240 standard uptake value ratio (SUVR) and asymmetry index (AI) were calculated in a priori defined volumes of interest (VOIs). Linear mixed effects models were used to study associations between interictal epileptiform discharges (IEDs), PSG parameters and 18F-MK6240 SUVR. Epileptiform activity was bilateral but asymmetrically present on FO electrodes in all patients and ≥ 95% of IEDs were not visible on scalp EEG. In one patient two focal seizures were detected on FO electrodes, both without visual scalp EEG correlate. We observed lateralized periodic discharges, brief potentially ictal rhythmic discharges and lateralized rhythmic delta activity on FO electrodes in four patients. Unlike scalp EEG, intracranial electrodes showed a lateralization of epileptiform activity. Although the amount of IEDs on intracranial electrodes was not associated to the 18F-MK6240 SUVR binding in different VOIs, there was a congruent asymmetry of the 18F-MK6240 binding towards the most epileptic hemisphere for the mesial (P = 0.007) and lateral temporal cortex (P = 0.006). IEDs on intracranial electrodes were most abundant during slow wave sleep (SWS) (92/h) and N2 (81/h), followed by N1 (33/h) and least frequent during wakefulness (17/h) and REM sleep (9/h). The extent of IEDs during sleep was not reflected in the relative time in each sleep stage spent (REM% (P = 0.415), N1% (P = 0.668), N2% (P = 0.442), SWS% (P = 0.988)), and not associated with the arousal index (P = 0.317), apnea-hypopnea index (P = 0.846) or oxygen desaturation index (P = 0.746). Together, our observations suggest a multi-directional interaction between sleep, epileptiform activity and tau pathology in AD.

3.
Alzheimers Dement ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38988055

ABSTRACT

INTRODUCTION: Spatial extent-based measures of how far amyloid beta (Aß) has spread throughout the neocortex may be more sensitive than traditional Aß-positron emission tomography (PET) measures of Aß level for detecting early Aß deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aß's association with tau proliferation and cognitive decline. METHODS: Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aß level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS: EXT enabled earlier detection of Aß deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aß+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION: These findings indicate EXT may be more sensitive to Aß's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS: Aß spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aß EXT improved detection of Aß below traditional PET thresholds. Early regional Aß deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aß EXT than Aß level. Neocortical tau onset aligned with reaching widespread neocortical Aß.

4.
Chin Med ; 19(1): 95, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965625

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a common type of dementia characterized by amyloid-ß (Aß) accumulation, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory effect, attenuates Aß-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal its mode of action. METHODS: Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly reduces Aß aggregation, a thioflavin T assay and dot blot were performed after incubating Aß with RUR. RESULTS: RUR administration attenuated the Aß-induced memory impairment in 5xFAD mice. Furthermore, decreased accumulation of Aß was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal organelles around Aß. In particular, RUR treatment downregulated the expression of ß-site amyloid precursor protein cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggregation of Aß, and eliminated Aß oligomers in vitro. CONCLUSIONS: This study showed that RUR could attenuate Aß-induced pathology and directly regulate the aggregation of Aß. These results suggest that RUR could be an efficient material for AD treatment through Aß regulation.

5.
Zool Res ; 45(4): 857-874, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39004863

ABSTRACT

Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3ß activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in NLRP3 -/- mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3ß activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3ß activation in primary hippocampal neurons, suggesting that GSK-3ß, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3ß as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.


Subject(s)
Autophagy , Dysbiosis , Gastrointestinal Microbiome , NLR Family, Pyrin Domain-Containing 3 Protein , Sleep Deprivation , tau Proteins , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Gastrointestinal Microbiome/physiology , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/complications , Mice , Autophagy/physiology , tau Proteins/metabolism , tau Proteins/genetics , Male , Hippocampus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Inflammasomes/metabolism
6.
Adv Healthc Mater ; : e2400149, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007278

ABSTRACT

Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy. To achieve this, the present study combined proteolysis-targeting chimera (PROTAC), a novel protein-degradation technique that mediates degradation of target proteins via the ubiquitin-proteasome system, and a neurotransmitter-derived lipidoid (NT-lipidoid) nanoparticle delivery system with high blood-brain barrier-penetration activity, to generate a novel nanomedicine named NPD. Peptide 1, a cationic tau-targeting PROTAC is loaded onto the positively charged nanoparticles using DNA-intercalation technology. The resulting nanomedicine displayed good encapsulation efficiency, serum stability, drug release profile, and blood-brain barrier-penetration capability. Furthermore, NPD potently induced tau clearance in both cultured neuronal cells and the brains of AD mice. Moreover, intravenous injection of NPD led to a significant improvement in the cognitive function of the AD mice, without any remarkable abnormalities, thereby supporting its clinical development. Collectively, the novel nanomedicine developed in this study may serve as an innovative strategy for AD therapy, since it effectively and specifically induces tau protein clearance in brain lesions, which in turn enhances cognition.

7.
Seizure ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38991884

ABSTRACT

INTRODUCTION: About 25 % of new-onset epilepsies are diagnosed after age 65. Late-onset epilepsy (LOE) is predicted to become a major healthcare problem in the next 15 years as the global population increases and ages. Neurodegenerative disorders account for 10-20 % of LOE, while over 20 % of these patients have an unknown etiology. Established diagnostic tools such as FDG-PET and novel biomarkers of neurodegeneration including amyloid and tau PET hold a lot of promise in diagnosing and ruling out neurodegenerative disorders in these patients. METHODS: We conducted a literature search to identify articles involving LOE populations and using one or more functional neuroimaging techniques. RESULTS: A total of 5 studies were identified through Boolean searching and snowballing. These were highly heterogenous with respect to operational definitions of LOE, analyses and interpretation pipelines. CONCLUSION: While there is some evidence for feasibility and usefulness of FDG- and Amyloid PET in LOE, methodological heterogeneities in the available literature preclude any notable conclusions. Future research in this field will benefit from a consensus on epilepsy-specific analysis and interpretation guidelines for amyloid and tau PET.

8.
Sci Rep ; 14(1): 16084, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992063

ABSTRACT

Cerebrospinal fluid (CSF) core biomarkers of Alzheimer's disease (AD), including amyloid peptide beta-42 (Aß42), Aß42/40 ratio, and phosphorylated tau (pTau), are precious tools for supporting AD diagnosis. However, their use in clinical practice is limited due to the invasiveness of CSF collection. Thus, there is intensive research to find alternative, noninvasive, and widely accessible biological matrices to measure AD core biomarkers. In this study, we measured AD core biomarkers in saliva and plasma by a fully automated platform. We enrolled all consecutive patients with cognitive decline. For each patient, we measured Aß42, Aß40, and pTau levels in CSF, saliva, and plasma by Lumipulse G1200 (Fujirebio). We included forty-two patients, of whom 27 had AD. Levels of all biomarkers significantly differed in the three biofluids, with saliva having the lowest and CSF the highest levels of Aß42, Aß40, and pTau. A positive correlation of pTau, Aß42/40 ratio, and pTau/Aß42 ratio levels in CSF and plasma was detected, while no correlation between any biomarker in CSF and saliva was found. Our findings suggest that plasma but not saliva could represent a surrogate biofluid for measuring core AD biomarkers. Specifically, plasma Aß42/40 ratio, pTau/Aß42 ratio, and pTau could serve as surrogates of the corresponding CSF biomarkers.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Saliva , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Saliva/metabolism , Saliva/chemistry , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Female , Male , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/analysis , tau Proteins/cerebrospinal fluid , tau Proteins/blood , tau Proteins/analysis , Middle Aged , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Peptide Fragments/analysis , Luminescent Measurements/methods , Aged, 80 and over
9.
Front Cell Neurosci ; 18: 1397046, 2024.
Article in English | MEDLINE | ID: mdl-38948027

ABSTRACT

Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer's disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in "real-world clinics" encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI.

10.
Biochem Biophys Res Commun ; 727: 150311, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38950494

ABSTRACT

In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.

11.
Nutr Neurosci ; : 1-15, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953237

ABSTRACT

OBJECTIVES: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS: A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS: TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION: These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.

12.
J Neurochem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946496

ABSTRACT

Alzheimer's disease (AD) is characterized by the accumulation of abnormally folded amyloid ß-protein (Aß) in the brain parenchyma and phosphorylated tau in neurons. Presenilin (PS, PSEN) 1 and PS2 are essential components of γ-secretase, which is responsible for the cleavage of amyloid precursor protein (APP) to generate Aß. PSEN mutations are associated with tau aggregation in frontotemporal dementia, regardless of the presence or absence of Aß pathology. However, the mechanism by which PS regulates tau aggregation is still unknown. Here, we found that tau phosphorylation and secretion were significantly increased in PS double-knock-out (PS1/2-/-) fibroblasts compared with wild-type fibroblasts. Tau-positive vesicles in the cytoplasm were significantly increased in PS1/2-/- fibroblasts. Active GSK-3ß was increased in PS1/2-/- fibroblasts, and inhibiting GSK3ß activity in PS1/2-/- fibroblasts resulted in decreased tau phosphorylation and secretion. Transfection of WT human PS1 and PS2 reduced the secretion of phosphorylated tau and active GSK-3ß in PS1/2-/- fibroblasts. However, PS1D257A without γ-secretase activity did not decrease the secretion of phosphorylated tau. Furthermore, nicastrin deficiency also increased tau phosphorylation and secretion. These results suggest that deficient PS complex maturation may increase tau phosphorylation and secretion. Thus, our studies discover a new pathway by which PS regulates tau phosphorylation/secretion and pathology independent of Aß and suggest that PS serves as a potential therapeutic target for treating neurodegenerative diseases involving tau aggregation.

13.
Curr Alzheimer Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963100

ABSTRACT

Alzheimer's disease (AD) is the frequent form of dementia in the world. Despite over 100 years of research into the causes of AD, including amyloid and tau protein, the research has stalled and has not led to any conclusions. Moreover, numerous projects aimed at finding a cure for AD have also failed to achieve a breakthrough. Thus, the failure of anti-amyloid and anti-tau protein therapy to treat AD significantly influenced the way we began to think about the etiology of the disease. This situation prompted a group of researchers to focus on ischemic brain episodes, which, like AD, mostly present alterations in the hippocampus. In this context, it has been proposed that cerebral ischemic incidents may play a major role in promoting amyloid and tau protein in neurodegeneration in AD. In this review, we summarized the experimental and clinical research conducted over several years on the role of ischemic brain episodes in the development of AD. Studies have shown changes typical of AD in the course of brain neurodegeneration post-ischemia, i.e., progressive brain and hippocampal atrophy, increased amyloid production, and modification of tau protein. In the post-ischemic brain, the diffuse and senile amyloid plaques and the development of neurofibrillary tangles characteristic of AD were revealed. The above data evidently showed that after brain ischemia, there are modifications in protein folding, leading to massive neuronal death and damage to the neuronal network, which triggers dementia with the AD phenotype.

14.
Alzheimers Dement ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958557

ABSTRACT

INTRODUCTION: Cerebral blood flow (CBF) is reduced in cognitively impaired (CI) Alzheimer's disease (AD) patients. We checked the sensitivity of time-encoded arterial spin labeling (te-ASL) in measuring CBF alterations in individuals with positive AD biomarkers and associations with relevant biomarkers in cognitively unimpaired (CU) individuals. METHODS: We compared te-ASL with single-postlabel delay (PLD) ASL in measuring CBF in 59 adults across the AD continuum, classified as CU amyloid beta (Aß) negative (-), CU Aß positive (+), and CI Aß+. We sought associations of CBF with biomarkers of AD, cerebrovascular disease, synaptic dysfunction, neurodegeneration, and cognition in CU participants. RESULTS: te-ASL was more sensitive at detecting CBF reduction in the CU Aß+ and CI Aß+ groups. In CU participants, lower CBF was associated with altered biomarkers of Aß, tau, synaptic dysfunction, and neurodegeneration. DISCUSSION: CBF reduction occurs early in the AD continuum. te-ASL is more sensitive than single-PLD ASL at detecting CBF changes in AD. HIGHLIGHTS: Lower CBF can be detected in CU subjects in the early AD continuum. te-ASL is more sensitive than single-PLD ASL at detecting CBF alterations in AD. CBF is linked to biomarkers of AD, synaptic dysfunction, and neurodegeneration.

15.
Fluids Barriers CNS ; 21(1): 54, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982476

ABSTRACT

BACKGROUND: Idiopathic Normal Pressure Hydrocephalus (iNPH) is a chronic condition affecting the elderly. It is characterized by a triad of symptoms and radiological findings. Glaucoma is the leading cause of irreversible blindness worldwide. Earlier studies have proposed that the rate of glaucoma is higher in iNPH patients, and of a possible link between ventriculoperitoneal shunt (VP) treatment and the development of glaucoma. OBJECTIVES: This study aimed to determine the prevalence of glaucoma among iNPH patients and assess the impact of VPs on glaucoma prevalence. METHODS: A cohort study was conducted at Kuopio University Hospital (KUH), including 262 patients with a ventriculoperitoneal shunt. Clinical data were obtained from the Kuopio NPH Registry and medical records. Patients were grouped by iNPH status: iNPH (+) - probable/possible iNPH (n = 192), and iNPH (-) - other causes of hydrocephalus (congenital, secondary, obstructive) (n = 70). We conducted statistical analysis using the Independent Samples T-test, Fisher's exact test, and Pearson Chi-Square. We compared demographics, glaucoma prevalence, brain biopsies positive for Amyloid-ß (Aß) and hyperphosphorylated tau (HPτ) as well as comorbidities for hypertension and diabetes medication. Age stratification assessed glaucoma prevalence in the full cohort. RESULTS: Both iNPH (+) and iNPH (-) groups had comparable demographic and comorbidity profiles. The prevalence of glaucoma in the iNPH (+) group was 11.5% (n = 22) and 11.4% (n = 8) in the iNPH (-) group without a statistically significant difference (p = 1.000). Brain biopsies positive for Amyloid-ß (Aß) and hyperphosphorylated tau (HPτ) were similar. CONCLUSIONS: Neither shunted iNPH patients nor those with a comorbid condition other than iNPH showed a markedly higher prevalence of glaucoma. Instead, both groups exhibited age-related increases in glaucoma prevalence, similar to the trends observed in population-based studies. Our data does not suggest a correlation between VP shunts and an elevated rate of glaucoma.


Subject(s)
Glaucoma , Hydrocephalus, Normal Pressure , Registries , Ventriculoperitoneal Shunt , Humans , Ventriculoperitoneal Shunt/adverse effects , Female , Hydrocephalus, Normal Pressure/epidemiology , Hydrocephalus, Normal Pressure/surgery , Aged , Male , Glaucoma/epidemiology , Aged, 80 and over , Cohort Studies , Middle Aged , Prevalence , Comorbidity
16.
Alzheimers Dement (N Y) ; 10(3): e12490, 2024.
Article in English | MEDLINE | ID: mdl-38988416

ABSTRACT

INTRODUCTION: The "A/T/N" (amyloid/tau/neurodegeneration) framework provides a biological basis for Alzheimer's disease (AD) diagnosis and can encompass additional changes such as inflammation ("I"). A spectrum of T/N/I imaging and plasma biomarkers was acquired in a phase 2 clinical trial of rasagiline in mild to moderate AD patients. We evaluated these to understand biomarker distributions and relationships within this population. METHODS: Plasma biomarkers of pTau-181, neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), other inflammation-related proteins, imaging measures including fluorodeoxyglucose (FDG) positron emission tomography (PET), flortaucipir PET, and volumetric magnetic resonance imaging (MRI), and cognitive endpoints were analyzed to assess characteristics and relationships for the overall population (N = 47 at baseline and N = 21 for longitudinal cognitive comparisons) and within age-decade subgroups (57-69, 70-79, 80-90 years). RESULTS: Data demonstrate wide clinical and biomarker heterogeneity in this population influenced by age and sex. Plasma pTau-181 and GFAP correlate with tau PET, most strongly in left inferior temporal cortex (p = 0.0002, p = 0.0006, respectively). In regions beyond temporal cortex, tau PET uptake decreased with age for the same pTau-181 or GFAP concentrations. FDG PET and brain volumes correlate with tau PET in numerous regions (such as inferior temporal: p = 0.0007, p = 0.00001, respectively). NfL, GFAP, and all imaging modalities correlate with baseline MMSE; subsequent MMSE decline is predicted by baseline parahippocampal and lateral temporal tau PET (p = 0.0007) and volume (p = 0.0006). Lateral temporal FDG PET (p = 0.006) and volume (p = 0.0001) are most strongly associated with subsequent ADAS-cog decline. NfL correlates with FDG PET and baseline MMSE but not tau PET. Inflammation biomarkers are intercorrelated but correlated with other biomarkers in only the youngest group. DISCUSSION: Associations between plasma biomarkers, imaging biomarkers, and cognitive status observed in this study provide insight into relationships among biological processes in mild to moderate AD. Findings show the potential to characterize AD patients regarding likely tau pathology, neurodegeneration, prospective clinical decline, and the importance of covariates such as age. Highlights: Plasma pTau-181 and GFAP correlated with regional and global tau PET in mild to moderate AD.NfL correlated with FDG PET and cognitive endpoints but not plasma pTau-181 or tau PET.Volume and FDG PET showed strong relationships to tau PET, one another, and cognitive status.Temporal volumes most strongly predicted decline in both MMSE and ADAS-cog.Volume and plasma biomarkers can enrich for elevated tau PET with age a significant covariate.

17.
Int J Mol Sci ; 25(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999992

ABSTRACT

Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson's disease (PD) is challenging due to overlapping phenotypes and the late onset of specific atypical signs. Therefore, easily assessable diagnostic biomarkers are highly needed. Since PD is a synucleopathy while PSP is a tauopathy, here, we investigated the clinical usefulness of serum oligomeric-α-synuclein (o-α-synuclein) and 181Thr-phosphorylated tau (p-tau181), which are considered as the most important pathological protein forms in distinguishing between these two parkinsonisms. We assessed serum o-α-synuclein and p-tau181 by ELISA and SIMOA, respectively, in 27 PSP patients, 43 PD patients, and 39 healthy controls (HC). Moreover, we evaluated the correlation between serum biomarkers and biological and clinical features of these subjects. We did not find any difference in serum concentrations of p-tau181 and o-α-synuclein nor in the o-α-synuclein/p-tau181 ratio between groups. However, we observed that serum p-tau181 positively correlated with age in HC and PD, while serum o-α-synuclein correlated positively with disease severity in PD and negatively with age in PSP. Finally, the o-α-synuclein/p-tau181 ratio showed a negative correlation with age in PD.


Subject(s)
Biomarkers , Parkinson Disease , Supranuclear Palsy, Progressive , alpha-Synuclein , tau Proteins , Humans , Supranuclear Palsy, Progressive/blood , Supranuclear Palsy, Progressive/diagnosis , alpha-Synuclein/blood , Parkinson Disease/blood , tau Proteins/blood , Female , Male , Aged , Biomarkers/blood , Middle Aged , Phosphorylation , Case-Control Studies , Diagnosis, Differential
18.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000011

ABSTRACT

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-ß and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-ß and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.


Subject(s)
Alzheimer Disease , tau Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/etiology , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Animals , Genome-Wide Association Study , Proteolysis
19.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000276

ABSTRACT

Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Hippocampus , Neurons , SARS-CoV-2 , Sumoylation , tau Proteins , tau Proteins/metabolism , Animals , Mice , Humans , Hippocampus/metabolism , Hippocampus/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/metabolism , Phosphorylation , Coronavirus Nucleocapsid Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/virology , Small Ubiquitin-Related Modifier Proteins/metabolism , Stress Granules/metabolism , Mice, Inbred C57BL , Phosphoproteins/metabolism , Male , Nucleocapsid Proteins/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/virology
20.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000459

ABSTRACT

Accumulation of hyper-phosphorylated tau and amyloid beta (Aß) are key pathological hallmarks of Alzheimer's disease (AD). Increasing evidence indicates that in the early pre-clinical stages of AD, phosphorylation and build-up of tau drives impairments in hippocampal excitatory synaptic function, which ultimately leads to cognitive deficits. Consequently, limiting tau-related synaptic abnormalities may have beneficial effects in AD. There is now significant evidence that the hippocampus is an important brain target for the endocrine hormone leptin and that leptin has pro-cognitive properties, as activation of synaptic leptin receptors markedly influences higher cognitive processes including learning and memory. Clinical studies have identified a link between the circulating leptin levels and the risk of AD, such that AD risk is elevated when leptin levels fall outwith the physiological range. This has fuelled interest in targeting the leptin system therapeutically. Accumulating evidence supports this possibility, as numerous studies have shown that leptin has protective effects in a variety of models of AD. Recent findings have demonstrated that leptin has beneficial effects in the preclinical stages of AD, as leptin prevents the early synaptic impairments driven by tau protein and amyloid ß. Here we review recent findings that implicate the leptin system as a potential novel therapeutic target in AD.


Subject(s)
Alzheimer Disease , Leptin , Synapses , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Humans , Leptin/metabolism , Animals , Synapses/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Receptors, Leptin/metabolism , Hippocampus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL