Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Nature ; 630(8015): 166-173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38778114

ABSTRACT

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Subject(s)
Cell Transdifferentiation , Hepatocytes , Liver Diseases , Liver , Humans , Biliary Tract/cytology , Biliary Tract/metabolism , Biliary Tract/pathology , Biopsy , Cell Plasticity , Chronic Disease , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/pathology , Hepatocytes/metabolism , Hepatocytes/cytology , Hepatocytes/pathology , Insulin/metabolism , Liver/pathology , Liver/metabolism , Liver/cytology , Liver Diseases/pathology , Liver Diseases/metabolism , Liver Regeneration , Organoids/metabolism , Organoids/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , TOR Serine-Threonine Kinases/metabolism
2.
J Hepatol ; 81(1): 108-119, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38460794

ABSTRACT

BACKGROUND & AIMS: In the developing liver, bipotent epithelial progenitor cells undergo lineage segregation to form hepatocytes, which constitute the bulk of the liver parenchyma, and biliary epithelial cells (cholangiocytes), which comprise the bile duct (a complex tubular network that is critical for normal liver function). Notch and TGFß signalling promote the formation of a sheet of biliary epithelial cells, the ductal plate, that organises into discontinuous tubular structures. How these structures elongate and connect to form a continuous duct remains undefined. We aimed to define the mechanisms by which the ductal plate transitions from a simple sheet of epithelial cells into a complex and connected bile duct. METHODS: By combining single-cell RNA sequencing of embryonic mouse livers with genetic tools and organoid models we functionally dissected the role of planar cell polarity in duct patterning. RESULTS: We show that the planar cell polarity protein VANGL2 is expressed late in intrahepatic bile duct development and patterns the formation of cell-cell contacts between biliary cells. The patterning of these cell contacts regulates the normal polarisation of the actin cytoskeleton within biliary cells and loss of Vangl2 function results in the abnormal distribution of cortical actin remodelling, leading to the failure of bile duct formation. CONCLUSIONS: Planar cell polarity is a critical step in the post-specification sculpture of the bile duct and is essential for establishing normal tissue architecture. IMPACT AND IMPLICATIONS: Like other branched tissues, such as the lung and kidney, the bile ducts use planar cell polarity signalling to coordinate cell movements; however, how these biochemical signals are linked to ductular patterning remains unclear. Here we show that the core planar cell polarity protein VANGL2 patterns how cell-cell contacts form in the mammalian bile duct and how ductular cells transmit confluent mechanical changes along the length of a duct. This work sheds light on how biological tubes are patterned across mammalian tissues (including within the liver) and will be important in how we promote ductular growth in patients where the duct is mis-patterned or poorly formed.


Subject(s)
Cell Polarity , Nerve Tissue Proteins , Animals , Mice , Cell Polarity/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/cytology , Liver/embryology , Liver/cytology , Liver/metabolism , Bile Ducts, Intrahepatic/embryology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/cytology , Biliary Tract/embryology , Biliary Tract/cytology , Biliary Tract/metabolism , Signal Transduction/physiology
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166335, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34973373

ABSTRACT

BACKGROUND & AIMS: Loss of primary cilia in epithelial cells is known to cause cystic diseases of the liver and kidney. We have previously shown that during experimental and human cirrhosis that primary cilia were predominantly expressed on biliary cells in the ductular reaction. However, the role of primary cilia in the pathogenesis of the ductular reaction is not fully understood. METHODS: Primary cilia were specifically removed in biliary epithelial cells (BECs) by the administration of tamoxifen to Kif3af/f;CK19CreERT mice at week 2 of a 20-week course of TAA treatment. Biliary progenitor cells were isolated and grown as organoids from gallbladders. Cells and tissue were analysed using histology, immunohistochemistry and Western blot assays. RESULTS: At the end of 20 weeks TAA administration, primary cilia loss in liver BECs resulted in multiple microscopic cystic lesions within an unaltered ductular reaction. These were not seen in control mice who did not receive TAA. There was no effect of biliary primary cilia loss on the development of cirrhosis. Increased cellular proliferation was seen within the cystic structures associated with a decrease in hepatocyte lobular proliferation. Loss of primary cilia within biliary organoids was initially associated with reduced cell passage survival but this inhibitory effect was diminished in later passages. ERK but not WNT signalling was enhanced in primary cilia loss-induced cystic lesions in vivo and its inhibition reduced the expansion of primary cilia deficient biliary progenitor cells in vitro. CONCLUSIONS: TAA-treated kif3a BEC-specific knockout mice had an unaltered progression to cirrhosis, but developed cystic lesions that showed increased proliferation.


Subject(s)
Cilia/pathology , Cysts/pathology , Kinesins/genetics , Liver Diseases/pathology , Animals , Biliary Tract/cytology , Cell Proliferation , Cilia/metabolism , Cysts/chemically induced , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Keratin-19/genetics , Keratin-19/metabolism , Kinesins/deficiency , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Stem Cells/cytology , Stem Cells/metabolism , Thioacetamide/toxicity
4.
J Nanobiotechnology ; 19(1): 406, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34872583

ABSTRACT

BACKGROUND: Primary biliary cholangitis (PBC) is a classical autoimmune disease, which is highly influenced by genetic determinants. Many genome-wide association studies (GWAS) have reported that numerous genetic loci were significantly associated with PBC susceptibility. However, the effects of genetic determinants on liver cells and its immune microenvironment for PBC remain unclear. RESULTS: We constructed a powerful computational framework to integrate GWAS summary statistics with scRNA-seq data to uncover genetics-modulated liver cell subpopulations for PBC. Based on our multi-omics integrative analysis, 29 risk genes including ORMDL3, GSNK2B, and DDAH2 were significantly associated with PBC susceptibility. By combining GWAS summary statistics with scRNA-seq data, we found that cholangiocytes exhibited a notable enrichment by PBC-related genetic association signals (Permuted P < 0.05). The risk gene of ORMDL3 showed the highest expression proportion in cholangiocytes than other liver cells (22.38%). The ORMDL3+ cholangiocytes have prominently higher metabolism activity score than ORMDL3- cholangiocytes (P = 1.38 × 10-15). Compared with ORMDL3- cholangiocytes, there were 77 significantly differentially expressed genes among ORMDL3+ cholangiocytes (FDR < 0.05), and these significant genes were associated with autoimmune diseases-related functional terms or pathways. The ORMDL3+ cholangiocytes exhibited relatively high communications with macrophage and monocyte. Compared with ORMDL3- cholangiocytes, the VEGF signaling pathway is specific for ORMDL3+ cholangiocytes to interact with other cell populations. CONCLUSIONS: To the best of our knowledge, this is the first study to integrate genetic information with single cell sequencing data for parsing genetics-influenced liver cells for PBC risk. We identified that ORMDL3+ cholangiocytes with higher metabolism activity play important immune-modulatory roles in the etiology of PBC.


Subject(s)
Biliary Tract , Liver Cirrhosis, Biliary , Membrane Proteins/genetics , Single-Cell Analysis/methods , Biliary Tract/cytology , Biliary Tract/metabolism , Cells, Cultured , Genome-Wide Association Study , Humans , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/metabolism , Membrane Proteins/metabolism , RNA-Seq
5.
Nature ; 597(7874): 87-91, 2021 09.
Article in English | MEDLINE | ID: mdl-34433966

ABSTRACT

Studies based on single cells have revealed vast cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degrees of plasticity during organogenesis1-5. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including the liver, pancreas, gall bladder and extra-hepatic bile ducts6,7. Experimental manipulation of various developmental signals in the mouse embryo has underscored important cellular plasticity in this embryonic territory6. This is reflected in the existence of human genetic syndromes as well as congenital malformations featuring multi-organ phenotypes in liver, pancreas and gall bladder6. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary and pancreatic structures have not yet been established. Here we combine computational modelling approaches with genetic lineage tracing to accurately reconstruct the hepato-pancreato-biliary lineage tree. We show that a multipotent progenitor subpopulation persists in the pancreato-biliary organ rudiment, contributing cells not only to the pancreas and gall bladder but also to the liver. Moreover, using single-cell RNA sequencing and functional experiments we define a specialized niche that supports this subpopulation in a multipotent state for an extended time during development. Together these findings indicate sustained plasticity underlying hepato-pancreato-biliary development that might also explain the rapid expansion of the liver while attenuating pancreato-biliary growth.


Subject(s)
Biliary Tract/cytology , Cell Lineage , Liver/cytology , Pancreas/cytology , Stem Cell Niche , Animals , Biliary Tract/embryology , Biliary Tract/metabolism , Cell Lineage/genetics , Cell Tracking , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Liver/embryology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Biological , Pancreas/embryology , Pancreas/metabolism , RNA-Seq , Signal Transduction , Single-Cell Analysis , Stem Cell Niche/genetics
6.
Hepatology ; 74(6): 3345-3361, 2021 12.
Article in English | MEDLINE | ID: mdl-34320243

ABSTRACT

BACKGROUND AND AIMS: Liver regeneration after extreme hepatocyte loss occurs through transdifferentiation of biliary epithelial cells (BECs), which includes dedifferentiation of BECs into bipotential progenitor cells (BPPCs) and subsequent redifferentiation into nascent hepatocytes and BECs. Although multiple molecules and signaling pathways have been implicated to play roles in the BEC-mediated liver regeneration, mechanisms underlying the dedifferentiation-redifferentiation transition and the early phase of BPPC redifferentiation that is pivotal for both hepatocyte and BEC directions remain largely unknown. APPROACH AND RESULTS: The zebrafish extreme liver damage model, genetic mutation, pharmacological inhibition, transgenic lines, whole-mount and fluorescent in situ hybridizations and antibody staining, single-cell RNA sequencing, quantitative real-time PCR, and heat shock-inducible overexpression were used to investigate roles and mechanisms of farnesoid X receptor (FXR; encoded by nuclear receptor subfamily 1, group H, member 4 [nr1h4]) in regulating BPPC redifferentiation. The nr1h4 expression was significantly up-regulated in response to extreme liver injury. Genetic mutation or pharmacological inhibition of FXR was ineffective to BEC-to-BPPC dedifferentiation but blocked the redifferentiation of BPPCs to both hepatocytes and BECs, leading to accumulation of undifferentiated or less-differentiated BPPCs. Mechanistically, induced overexpression of extracellular signal-related kinase (ERK) 1 (encoded by mitogen-activated protein kinase 3) rescued the defective BPPC-to-hepatocyte redifferentiation in the nr1h4 mutant, and ERK1 itself was necessary for the BPPC-to-hepatocyte redifferentiation. The Notch activities in the regenerating liver of nr1h4 mutant attenuated, and induced Notch activation rescued the defective BPPC-to-BEC redifferentiation in the nr1h4 mutant. CONCLUSIONS: FXR regulates BPPC-to-hepatocyte and BPPC-to-BEC redifferentiations through ERK1 and Notch, respectively. Given recent applications of FXR agonists in the clinical trials for liver diseases, this study proposes potential underpinning mechanisms by characterizing roles of FXR in the stimulation of dedifferentiation-redifferentiation transition and BPPC redifferentiation.


Subject(s)
Liver Regeneration , Platelet Membrane Glycoproteins/physiology , Stem Cells/physiology , Animals , Biliary Tract/cytology , Cell Differentiation , Liver Regeneration/physiology , Real-Time Polymerase Chain Reaction , Zebrafish
7.
Hepatology ; 74(6): 3269-3283, 2021 12.
Article in English | MEDLINE | ID: mdl-34129689

ABSTRACT

BACKGROUND AND AIMS: Stratified therapy has entered clinical practice in primary biliary cholangitis (PBC), with routine use of second-line therapy in nonresponders to first-line therapy with ursodeoxycholic acid (UDCA). The mechanism for nonresponse to UDCA remains, however, unclear and we lack mechanistic serum markers. The UK-PBC study was established to explore the biological basis of UDCA nonresponse in PBC and identify markers to enhance treatment. APPROACH AND RESULTS: Discovery serum proteomics (Olink) with targeted multiplex validation were carried out in 526 subjects from the UK-PBC cohort and 97 healthy controls. In the discovery phase, untreated PBC patients (n = 68) exhibited an inflammatory proteome that is typically reduced in scale, but not resolved, with UDCA therapy (n = 416 treated patients). Nineteen proteins remained at a significant expression level (defined using stringent criteria) in UDCA-treated patients, six of them representing a tightly linked profile of chemokines (including CCL20, known to be released by biliary epithelial cells (BECs) undergoing senescence in PBC). All showed significant differential expression between UDCA responders and nonresponders in both the discovery and validation cohorts. A linear discriminant analysis, using serum levels of C-X-C motif chemokine ligand 11 and C-C motif chemokine ligand 20 as markers of responder status, indicated a high level of discrimination with an AUC of 0.91 (CI, 0.83-0.91). CONCLUSIONS: UDCA under-response in PBC is characterized by elevation of serum chemokines potentially related to cellular senescence and was previously shown to be released by BECs in PBC, suggesting a potential role in the pathogenesis of high-risk disease. These also have potential for development as biomarkers for identification of high-risk disease, and their clinical utility as biomarkers should be evaluated further in prospective studies.


Subject(s)
Liver Cirrhosis, Biliary/drug therapy , Ursodeoxycholic Acid/therapeutic use , Aged , Biliary Tract/cytology , Biliary Tract/metabolism , Biomarkers/blood , Case-Control Studies , Chemokines/blood , Epithelial Cells/metabolism , Female , Humans , Liver Cirrhosis, Biliary/blood , Liver Cirrhosis, Biliary/metabolism , Male , Middle Aged , Proteome , Treatment Failure
8.
Biotechnol Bioeng ; 118(7): 2572-2584, 2021 07.
Article in English | MEDLINE | ID: mdl-33811654

ABSTRACT

The integration of a bile drainage structure into engineered liver tissues is an important issue in the advancement of liver regenerative medicine. Primary biliary cells, which play a vital role in bile metabolite accumulation, are challenging to obtain in vitro because of their low density in the liver. In contrast, large amounts of purified hepatocytes can be easily acquired from rodents. The in vitro chemically induced liver progenitors (CLiPs) from primary mature hepatocytes offer a platform to produce biliary cells abundantly. Here, we generated a functional CLiP-derived tubular bile duct-like structure using the chemical conversion technology. We obtained an integrated tubule-hepatocyte tissue via the direct coculture of hepatocytes on the established tubular biliary-duct-like structure. This integrated tubule-hepatocyte tissue was able to transport the bile, as quantified by the cholyl-lysyl-fluorescein assay, which was not observed in the un-cocultured structure or in the biliary cell monolayer. Furthermore, this in vitro integrated tubule-hepatocyte tissue exhibited an upregulation of hepatic marker genes. Together, these findings demonstrated the efficiency of the CLiP-derived tubular biliary-duct-like structures regarding the accumulation and transport of bile.


Subject(s)
Bile/metabolism , Biliary Tract/metabolism , Cell Differentiation , Epithelial Cells/metabolism , Hepatocytes/metabolism , Stem Cells/metabolism , Animals , Biliary Tract/cytology , Biological Transport, Active , Coculture Techniques , Epithelial Cells/cytology , Hepatocytes/cytology , Male , Rats , Rats, Wistar , Stem Cells/cytology
9.
Science ; 371(6532)2021 02 26.
Article in English | MEDLINE | ID: mdl-33632817

ABSTRACT

The liver is organized into zones in which hepatocytes express different metabolic enzymes. The cells most responsible for liver repopulation and regeneration remain undefined, because fate mapping has only been performed on a few hepatocyte subsets. Here, 14 murine fate-mapping strains were used to systematically compare distinct subsets of hepatocytes. During homeostasis, cells from both periportal zone 1 and pericentral zone 3 contracted in number, whereas cells from midlobular zone 2 expanded in number. Cells within zone 2, which are sheltered from common injuries, also contributed to regeneration after pericentral and periportal injuries. Repopulation from zone 2 was driven by the insulin-like growth factor binding protein 2-mechanistic target of rapamycin-cyclin D1 (IGFBP2-mTOR-CCND1) axis. Therefore, different regions of the lobule exhibit differences in their contribution to hepatocyte turnover, and zone 2 is an important source of new hepatocytes during homeostasis and regeneration.


Subject(s)
Hepatocytes/physiology , Liver Regeneration , Liver/physiology , Animals , Biliary Tract/cytology , Biliary Tract Diseases/physiopathology , Cell Proliferation , Cyclin D1/metabolism , Gene Knock-In Techniques , Homeostasis , Insulin-Like Growth Factor Binding Protein 2/metabolism , Liver/cytology , Mice , TOR Serine-Threonine Kinases/metabolism
10.
Hepatology ; 74(1): 397-410, 2021 07.
Article in English | MEDLINE | ID: mdl-33314176

ABSTRACT

BACKGROUND AND AIMS: Following mild liver injury, pre-existing hepatocytes replicate. However, if hepatocyte proliferation is compromised, such as in chronic liver diseases, biliary epithelial cells (BECs) contribute to hepatocytes through liver progenitor cells (LPCs), thereby restoring hepatic mass and function. Recently, augmenting innate BEC-driven liver regeneration has garnered attention as an alternative to liver transplantation, the only reliable treatment for patients with end-stage liver diseases. Despite this attention, the molecular basis of BEC-driven liver regeneration remains poorly understood. APPROACH AND RESULTS: By performing a chemical screen with the zebrafish hepatocyte ablation model, in which BECs robustly contribute to hepatocytes, we identified farnesoid X receptor (FXR) agonists as inhibitors of BEC-driven liver regeneration. Here we show that FXR activation blocks the process through the FXR-PTEN (phosphatase and tensin homolog)-PI3K (phosphoinositide 3-kinase)-AKT-mTOR (mammalian target of rapamycin) axis. We found that FXR activation blocked LPC-to-hepatocyte differentiation, but not BEC-to-LPC dedifferentiation. FXR activation also suppressed LPC proliferation and increased its death. These defects were rescued by suppressing PTEN activity with its chemical inhibitor and ptena/b mutants, indicating PTEN as a critical downstream mediator of FXR signaling in BEC-driven liver regeneration. Consistent with the role of PTEN in inhibiting the PI3K-AKT-mTOR pathway, FXR activation reduced the expression of pS6, a marker of mTORC1 activation, in LPCs of regenerating livers. Importantly, suppressing PI3K and mTORC1 activities with their chemical inhibitors blocked BEC-driven liver regeneration, as did FXR activation. CONCLUSIONS: FXR activation impairs BEC-driven liver regeneration by enhancing PTEN activity; the PI3K-AKT-mTOR pathway controls the regeneration process. Given the clinical trials and use of FXR agonists for multiple liver diseases due to their beneficial effects on steatosis and fibrosis, the detrimental effects of FXR activation on LPCs suggest a rather personalized use of the agonists in the clinic.


Subject(s)
Cell Differentiation/drug effects , Liver Regeneration/drug effects , Receptors, Cytoplasmic and Nuclear/agonists , Stem Cells/drug effects , Animals , Animals, Genetically Modified , Biliary Tract/cytology , Cell Proliferation , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/physiology , Hepatocytes/drug effects , Hepatocytes/physiology , Liver/drug effects , Liver/physiology , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphoprotein Phosphatases/antagonists & inhibitors , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Stem Cells/physiology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
Expert Rev Gastroenterol Hepatol ; 15(2): 159-164, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32933347

ABSTRACT

INTRODUCTION: Interstitial cells of Cajal (ICCs) are a special type of interstitial cells located in the gastrointestinal tract muscles. They are closely related to smooth muscle cells and neurons, participate in gastrointestinal motility and nerve signal transmission, and are pacemaker cells for gastrointestinal electrical activity. Research interest in ICCs has continuously grown since they were first discovered in 1893. Later, researchers discovered that they are also present in other organs, including the biliary tract, urethra, bladder, etc.; these cells were named interstitial Cajal-like cells (ICLCs), and attempts have been made to explain their relationships with certain diseases. AREAS COVERED: This review paper summarizes the morphology, identification, classification, function, and distribution of ICLCs in the biliary tract and their relationship to biliary tract diseases. EXPERT OPINION: Based on the function and distribution of ICLCs in the biliary tract system, ICLCs will provide a more reliable theoretical basis for the mechanisms of pathogenesis of and treatments for biliary tract diseases.


Subject(s)
Biliary Tract/cytology , Telocytes/classification , Telocytes/physiology , Humans , Interstitial Cells of Cajal/classification , Interstitial Cells of Cajal/physiology
12.
STAR Protoc ; 1(1): 100009, 2020 06 19.
Article in English | MEDLINE | ID: mdl-33111070

ABSTRACT

This protocol is a procedure for establishment and culture of cancer and non-cancer organoids using tissues from biliary tract carcinoma (BTC) patients. These BTC organoids can be used for various biological analyses and drug screening. One challenge in establishing and culturing BTC organoids is non-cancer cells contaminating surgically resected tumor tissues form organoids concurrently with cancer organoids. Careful validation that the established organoids are cancer-derived is important. For complete details on the use and generation of this protocol, please refer to Saito et al. (2019) in the journal Cell Reports.


Subject(s)
Biliary Tract Neoplasms , Biliary Tract/cytology , Carcinoma , Cell Culture Techniques/methods , Organoids , Tissue Culture Techniques/methods , Humans , Organoids/cytology , Organoids/metabolism
13.
Hepatology ; 72(5): 1786-1799, 2020 11.
Article in English | MEDLINE | ID: mdl-32060934

ABSTRACT

BACKGROUND AND AIMS: During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. APPROACH AND RESULTS: Exposure of zebrafish embryos to 17ß-estradiol (E2) during liver development significantly decreased hepatocyte-specific gene expression, liver size, and hepatocyte number. In contrast, pharmacological blockade of estrogen synthesis or nuclear estrogen receptor (ESR) signaling enhanced liver size and hepatocyte marker expression. Transgenic reporter fish demonstrated nuclear ESR activity in the developing liver. Chemical inhibition and morpholino knockdown of nuclear estrogen receptor 2b (esr2b) increased hepatocyte gene expression and blocked the effects of E2 exposure. esr2b-/- mutant zebrafish exhibited significantly increased expression of hepatocyte markers with no impact on liver progenitors, other endodermal lineages, or vasculature. Significantly, E2-stimulated Esr2b activity promoted biliary epithelial differentiation at the expense of hepatocyte fate, whereas loss of esr2b impaired biliary lineage commitment. Chemical and genetic epistasis studies identified bone morphogenetic protein (BMP) signaling as a mediator of the estrogen effects. The divergent impact of estrogen on hepatobiliary fate was confirmed in a human hepatoblast cell line, indicating the relevance of this pathway for human liver development. CONCLUSIONS: Our studies identify E2, esr2b, and downstream BMP activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant clinical implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy.


Subject(s)
Biliary Tract/embryology , Estradiol/metabolism , Estrogen Receptor beta/metabolism , Gene Expression Regulation, Developmental , Liver/embryology , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Biliary Tract/cytology , Biliary Tract/metabolism , Cell Differentiation/genetics , Cell Line , Embryo, Nonmammalian , Estradiol/administration & dosage , Estrogen Receptor beta/genetics , Female , Gene Knockdown Techniques , Hepatocytes/physiology , Liver/cytology , Liver/metabolism , Male , Models, Animal , Morpholinos/administration & dosage , Morpholinos/genetics , Signal Transduction/genetics , Stem Cells/physiology , Zebrafish , Zebrafish Proteins/genetics
14.
Hepatology ; 71(3): 972-989, 2020 03.
Article in English | MEDLINE | ID: mdl-31330051

ABSTRACT

BACKGROUND AND AIMS: Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS: Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS: We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.


Subject(s)
Biliary Tract/physiopathology , Cholangitis, Sclerosing/physiopathology , Regeneration/physiology , Stem Cell Niche/physiology , Adult , Aged , Animals , Biliary Tract/cytology , Cell Differentiation , Cholangitis, Sclerosing/therapy , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Pyridines/toxicity , Receptors, Notch/physiology , Wnt Signaling Pathway/physiology
15.
Yakugaku Zasshi ; 139(12): 1509-1512, 2019.
Article in Japanese | MEDLINE | ID: mdl-31787637

ABSTRACT

Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) are expected to be applicable to large-scale in vitro hepatotoxicity screening systems. Accordingly, methods for generating HLCs from human iPS cells have been improved over the past decade. However, although human hepatocytes have zone-specific characteristics in vivo, there is currently no technique to generate zone-specific HLCs from human iPS cells. Therefore, to generate HLCs with zone-specific properties from human iPS cells, we cultured iPS-HLCs using a parenchymal or nonparenchymal cell-conditioned medium (CM). The results showed that urea production and gluconeogenesis capacity in iPS-HLCs were increased by culturing with cholangiocyte-CM, and glutamine production and drug metabolism capacity in iPS-HLCs were increased by culturing with hepatocyte-CM. It was thus clarified that iPS-HLCs acquire zone 1 hepatocyte-like properties by culturing with cholangiocyte-CM and that iPS-HLCs acquire zone 3 hepatocyte-like properties by culturing with hepatocyte-CM. In addition, we found that WNT inhibitory factor-1 secreted from cholangiocytes, and WNT7B and WNT8B secreted from hepatocytes play important roles in the zone-specific conversion of iPS-HLCs. We hope that our findings will facilitate the application of iPS-HLCs to drug discovery research.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug Discovery , Hepatocytes , Induced Pluripotent Stem Cells , Adaptor Proteins, Signal Transducing/metabolism , Biliary Tract/cytology , Biliary Tract/metabolism , Cell Culture Techniques , Culture Media , Gluconeogenesis , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Urea/metabolism , Wnt Proteins/metabolism
16.
Cells ; 8(11)2019 11 15.
Article in English | MEDLINE | ID: mdl-31731674

ABSTRACT

Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.


Subject(s)
Biliary Tract/cytology , Cholestenones/adverse effects , Histone Deacetylase 6/genetics , Interleukin-6/genetics , Biliary Tract/drug effects , Biliary Tract/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence , Epithelial-Mesenchymal Transition , Histone Deacetylase 6/metabolism , Humans , Interleukin-6/metabolism , Signal Transduction/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Tissue Donors
17.
Sci Rep ; 9(1): 17466, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31767912

ABSTRACT

Despite considerable recent insight into the molecular phenotypes and type 2 innate immune functions of tuft cells in rodents, there is sparse knowledge about the region-specific presence and molecular phenotypes of tuft cells in the human digestive tract. Here, we traced cholinergic tuft cells throughout the human alimentary tract with immunohistochemistry and deciphered their region-specific distribution and biomolecule coexistence patterns. While absent from the human stomach, cholinergic tuft cells localized to villi and crypts in the small and large intestines. In the biliary tract, they were present in the epithelium of extra-hepatic peribiliary glands, but not observed in the epithelia of the gall bladder and the common duct of the biliary tract. In the pancreas, solitary cholinergic tuft cells were frequently observed in the epithelia of small and medium-size intra- and inter-lobular ducts, while they were absent from acinar cells and from the main pancreatic duct. Double immunofluorescence revealed co-expression of choline acetyltransferase with structural (cytokeratin 18, villin, advillin) tuft cell markers and eicosanoid signaling (cyclooxygenase 1, hematopoietic prostaglandin D synthase, 5-lipoxygenase activating protein) biomolecules. Our results indicate that region-specific cholinergic signaling of tuft cells plays a role in mucosal immunity in health and disease, especially in infection and cancer.


Subject(s)
Biliary Tract/cytology , Intestines/cytology , Pancreas/cytology , Signal Transduction , 5-Lipoxygenase-Activating Proteins/metabolism , Adolescent , Adult , Aged , Biliary Tract/metabolism , Child , Cyclooxygenase 1/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Humans , Intestinal Mucosa/metabolism , Intramolecular Oxidoreductases/metabolism , Keratin-18/metabolism , Male , Microfilament Proteins/metabolism , Middle Aged , Pancreas/metabolism , Young Adult
18.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165557, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31521820

ABSTRACT

Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. METHODS: FVB/NJ and Mdr2-/- mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. RESULTS: Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2-/- mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2-/- mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. CONCLUSION: Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , Cholangitis, Sclerosing/therapy , Liver Cirrhosis/therapy , Mast Cells/pathology , Morpholinos/therapeutic use , Stem Cell Factor/genetics , Animals , Biliary Tract/cytology , Biliary Tract/metabolism , Biliary Tract/pathology , Cell Movement , Cellular Senescence , Cholangitis, Sclerosing/genetics , Cholangitis, Sclerosing/pathology , Down-Regulation , Female , Gene Deletion , Humans , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Male , Mast Cells/cytology , Mast Cells/metabolism , Mice , Morpholinos/genetics , ATP-Binding Cassette Sub-Family B Member 4
19.
Cells ; 8(10)2019 09 20.
Article in English | MEDLINE | ID: mdl-31547151

ABSTRACT

BACKGROUND: Chronic liver diseases are frequently accompanied with activation of biliary epithelial cells (BECs) that can differentiate into hepatocytes and cholangiocytes, providing an endogenous back-up system. Functional studies on BECs often rely on isolations of an BEC cell population from healthy and/or injured livers. However, a consensus on the characterization of these cells has not yet been reached. The aim of this study was to compare the publicly available transcriptome profiles of human and mouse BECs and to establish gene signatures that can identify quiescent and activated human and mouse BECs. METHODS: We used publicly available transcriptome data sets of human and mouse BECs, compared their profiles and analyzed co-expressed genes and pathways. By merging both human and mouse BEC-enriched genes, we obtained a quiescent and activation gene signature and tested them on BEC-like cells and different liver diseases using gene set enrichment analysis. In addition, we identified several genes from both gene signatures to identify BECs in a scRNA sequencing data set. RESULTS: Comparison of mouse BEC transcriptome data sets showed that the isolation method and array platform strongly influences their general profile, still most populations are highly enriched in most genes currently associated with BECs. Pathway analysis on human and mouse BECs revealed the KRAS signaling as a new potential pathway in BEC activation. We established a quiescent and activated BEC gene signature that can be used to identify BEC-like cells and detect BEC enrichment in alcoholic hepatitis, non-alcoholic steatohepatitis (NASH) and peribiliary sclerotic livers. Finally, we identified a gene set that can distinguish BECs from other liver cells in mouse and human scRNAseq data. CONCLUSIONS: Through a meta-analysis of human and mouse BEC gene profiles we identified new potential pathways in BEC activation and created unique gene signatures for quiescent and activated BECs. These signatures and pathways will help in the further characterization of this progenitor cell type in mouse and human liver development and disease.


Subject(s)
Biliary Tract/cytology , Biliary Tract/metabolism , Epithelial Cells/metabolism , Transcriptome/physiology , Animals , Biliary Tract/physiology , Cell Division/genetics , Cell Transdifferentiation/genetics , Gene Expression Profiling/methods , Hepatocytes/physiology , High-Throughput Nucleotide Sequencing , Humans , Liver/cytology , Mice , Microarray Analysis , Regeneration/genetics , Sequence Analysis, RNA
20.
Nature ; 574(7776): 112-116, 2019 10.
Article in English | MEDLINE | ID: mdl-31554966

ABSTRACT

Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.


Subject(s)
Biliary Tract/embryology , Intestines/embryology , Liver/embryology , Models, Biological , Morphogenesis , Pancreas/embryology , Animals , Biliary Tract/cytology , Biomarkers/analysis , Biomarkers/metabolism , Body Patterning , Endoderm/cytology , Endoderm/embryology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intestines/cytology , Liver/cytology , Male , Mice , Organoids/cytology , Organoids/embryology , Pancreas/cytology , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Spheroids, Cellular/transplantation , Transcription Factor HES-1/analysis , Transcription Factor HES-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL