Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.162
Filter
1.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39120083

ABSTRACT

In multicellular tissues, the size and shape of cells are intricately linked with their physiological functions. In the vertebrate auditory organ, the neurosensory epithelium develops as a mosaic of sensory hair cells (HCs), and their glial-like supporting cells, which have distinct morphologies and functional properties at different frequency positions along its tonotopic long axis. In the chick cochlea, the basilar papilla (BP), proximal (high-frequency) HCs, are larger than their distal (low-frequency) counterparts, a morphological feature essential for sound perception. Mitochondrial dynamics, which constitute the equilibrium between fusion and fission, regulate differentiation and functional refinement across a variety of cell types. We investigate this as a potential mechanism for regulating the shape of developing HCs. Using live imaging in intact BP explants, we identify distinct remodelling of mitochondrial networks in proximal compared with distal HCs. Manipulating mitochondrial dynamics in developing HCs alters their normal morphology along the proximal-distal (tonotopic) axis. Inhibition of the mitochondrial fusion machinery decreased proximal HC surface area, whereas promotion of fusion increased the distal HC surface area. We identify mitochondrial dynamics as a key regulator of HC morphology in developing inner ear epithelia.


Subject(s)
Cochlea , Hair Cells, Auditory , Mitochondria , Mitochondrial Dynamics , Animals , Cochlea/embryology , Cochlea/cytology , Cochlea/growth & development , Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Mitochondria/metabolism , Chick Embryo , Cell Shape , Chickens , Cell Differentiation
2.
J Acoust Soc Am ; 156(2): 989-1003, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39136635

ABSTRACT

In order to improve the prediction accuracy of the sound quality of vehicle interior noise, a novel sound quality prediction model was proposed based on the physiological response predicted metrics, i.e., loudness, sharpness, and roughness. First, a human-ear sound transmission model was constructed by combining the outer and middle ear finite element model with the cochlear transmission line model. This model converted external input noise into cochlear basilar membrane response. Second, the physiological perception models of loudness, sharpness, and roughness were constructed by transforming the basilar membrane response into sound perception related to neuronal firing. Finally, taking the calculated loudness, sharpness, and roughness of the physiological model and the subjective evaluation values of vehicle interior noise as the parameters, a sound quality prediction model was constructed by TabNet model. The results demonstrate that the loudness, sharpness, and roughness computed by the human-ear physiological model exhibit a stronger correlation with the subjective evaluation of sound quality annoyance compared to traditional psychoacoustic parameters. Furthermore, the average error percentage of sound quality prediction based on the physiological model is only 3.81%, which is lower than that based on traditional psychoacoustic parameters.


Subject(s)
Loudness Perception , Noise, Transportation , Psychoacoustics , Humans , Loudness Perception/physiology , Acoustic Stimulation/methods , Finite Element Analysis , Models, Biological , Automobiles , Basilar Membrane/physiology , Cochlea/physiology , Auditory Perception/physiology , Noise , Ear, Middle/physiology , Computer Simulation
3.
Redox Rep ; 29(1): 2382943, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39092597

ABSTRACT

OBJECTIVES: Diabetes is closely linked to hearing loss, yet the exact mechanisms remain unclear. Cochlear stria vascularis and pericytes (PCs) are crucial for hearing. This study investigates whether high glucose induces apoptosis in the cochlear stria vascularis and pericytes via elevated ROS levels due to oxidative stress, impacting hearing loss. METHODS: We established a type II diabetes model in C57BL/6J mice and used auditory brainstem response (ABR), Evans blue staining, HE staining, immunohistochemistry, and immunofluorescence to observe changes in hearing, blood-labyrinth barrier (BLB) permeability, stria vascularis morphology, and apoptosis protein expression. Primary cultured stria vascularis pericytes were subjected to high glucose, and apoptosis levels were assessed using flow cytometry, Annexin V-FITC, Hoechst 33342 staining, Western blot, Mitosox, and JC-1 probes. RESULTS: Diabetic mice showed decreased hearing thresholds, reduced stria vascularis density, increased oxidative stress, cell apoptosis, and decreased antioxidant levels. High glucose exposure increased apoptosis and ROS content in pericytes, while mitochondrial membrane potential decreased, with AIF and cytochrome C (CytC) released from mitochondria to the cytoplasm. Adding oxidative scavengers reduced AIF and CytC release, decreasing pericyte apoptosis. DISCUSSION: Hyperglycemia may induce mitochondrial apoptosis of cochlear stria vascularis pericytes through oxidative stress.


Subject(s)
Apoptosis Inducing Factor , Apoptosis , Cytochromes c , Hyperglycemia , Mice, Inbred C57BL , Mitochondria , Oxidative Stress , Pericytes , Proto-Oncogene Proteins c-bcl-2 , Reactive Oxygen Species , Stria Vascularis , Animals , Pericytes/metabolism , Pericytes/drug effects , Pericytes/pathology , Stria Vascularis/metabolism , Stria Vascularis/pathology , Mice , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Cytochromes c/metabolism , Apoptosis Inducing Factor/metabolism , Hyperglycemia/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Male , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Cochlea/metabolism , Cochlea/pathology
4.
Clin Epigenetics ; 16(1): 86, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965562

ABSTRACT

BACKGROUND: Presbycusis, also referred to as age-related hearing loss (ARHL), is a condition that results from the cumulative effects of aging on an individual's auditory capabilities. Given the limited understanding of epigenetic mechanisms in ARHL, our research focuses on alterations in chromatin-accessible regions. METHODS: We employed assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) in conjunction with unique identifier (UID) mRNA-seq between young and aging cochleae, and conducted integrated analysis as well as motif/TF-gene prediction. Additionally, the essential role of super-enhancers (SEs) in the development of ARHL was identified by comparative analysis to previous research. Meanwhile, an ARHL mouse model and an aging mimic hair cell (HC) model were established with a comprehensive identification of senescence phenotypes to access the role of SEs in ARHL progression. RESULTS: The control cochlear tissue exhibited greater chromatin accessibility than cochlear tissue affected by ARHL. Furthermore, the levels of histone 3 lysine 27 acetylation were significantly depressed in both aging cochlea and aging mimic HEI-OC1 cells, highlighting the essential role of SEs in the development of ARHL. The potential senescence-associated super-enhancers (SASEs) of ARHL were identified, most of which exhibited decreased chromatin accessibility. The majority of genes related to the SASEs showed obvious decreases in mRNA expression level in aging HCs and was noticeably altered following treatment with JQ1 (a commonly used SE inhibitor). CONCLUSION: The chromatin accessibility in control cochlear tissue was higher than that in cochlear tissue affected by ARHL. Potential SEs involved in ARHL were identified, which might provide a basis for future therapeutics targeting SASEs related to ARHL.


Subject(s)
Aging , Chromatin , Cochlea , Enhancer Elements, Genetic , Presbycusis , Animals , Mice , Cochlea/metabolism , Cochlea/drug effects , Chromatin/genetics , Chromatin/metabolism , Aging/genetics , Presbycusis/genetics , Presbycusis/metabolism , Enhancer Elements, Genetic/genetics , Transcriptome/genetics , Disease Models, Animal , Epigenesis, Genetic/genetics , Histones/metabolism , Histones/genetics , High-Throughput Nucleotide Sequencing/methods , Male
5.
J Neural Eng ; 21(4)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39029505

ABSTRACT

Objective. The cochlear implant (CI) belongs to the most successful neuro-prostheses. Traditionally, the stimulating electrode arrays are inserted into the scala tympani (ST), the lower cochlear cavity, which enables simple surgical access. However, often deep insertion is blocked, e.g. by ossification, and the auditory nerve fibers (ANFs) of lower frequency regions cannot be stimulated causing severe restrictions in speech understanding. As an alternative, the CI can be inserted into the scala vestibuli (SV), the other upper cochlear cavity.Approach. In this computational study, the excitability of 25 ANFs are compared for stimulation with ST and SV implants. We employed a 3-dimensional realistic human cochlear model with lateral wall electrodes based on aµ-CT dataset and manually traced fibers. A finite element approach in combination with a compartment model of a spiral ganglion cell was used to simulate monophasic stimulation with anodic (ANO) and cathodic (CAT) pulses of 50µs.Main results. ANO thresholds are lower in ST (mean/std =µ/σ= 189/55µA) stimulation compared to SV (µ/σ= 323/119µA) stimulation. Contrary, CAT thresholds are higher for the ST array (µ/σ= 165/42µA) compared to the SV array (µ/σ= 122/46µA). The threshold amplitude depends on the specific fiber-electrode spatial relationship, such as lateral distance from the cochlear axis, the angle between electrode and target ANF, and the curvature of the peripheral process. For CAT stimulation the SV electrodes show a higher selectivity leading to less cross-stimulation of additional fibers from different cochlear areas.Significance. We present a first simulation study with a human cochlear model that investigates an additional CI placement into the SV and its impact on the excitation behavior. Results predict comparable outcomes to ST electrodes which confirms that SV implantation might be an alternative for patients with a highly obstructed ST.


Subject(s)
Cochlear Implantation , Cochlear Implants , Cochlear Nerve , Scala Tympani , Scala Vestibuli , Humans , Cochlear Nerve/physiology , Scala Tympani/physiology , Scala Tympani/surgery , Scala Vestibuli/physiology , Cochlear Implantation/methods , Cochlear Implantation/instrumentation , Electrodes, Implanted , Electric Stimulation/methods , Electric Stimulation/instrumentation , Cochlea/physiology , Computer Simulation
6.
Sci Transl Med ; 16(755): eadn0689, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985856

ABSTRACT

Mutations in microRNA-96 (MIR96) cause autosomal dominant deafness-50 (DFNA50), a form of delayed-onset hearing loss. Genome editing has shown efficacy in hearing recovery through intervention in neonatal mice, yet editing in the adult inner ear is necessary for clinical applications, which has not been done. Here, we developed a genome editing therapy for the MIR96 mutation 14C>A by screening different CRISPR systems and optimizing Cas9 expression and the sgRNA scaffold for efficient and specific mutation editing. AAV delivery of the KKH variant of Staphylococcus aureus Cas9 (SaCas9-KKH) and sgRNA to the cochleae of presymptomatic (3-week-old) and symptomatic (6-week-old) adult Mir9614C>A/+ mutant mice improved hearing long term, with efficacy increased by injection at a younger age. Adult inner ear delivery resulted in transient Cas9 expression without evidence of AAV genomic integration, indicating the good safety profile of our in vivo genome editing strategy. We developed a dual-AAV system, including an AAV-sgmiR96-master carrying sgRNAs against all known human MIR96 mutations. Because mouse and human MIR96 sequences share 100% homology, our approach and sgRNA selection for efficient and specific hair cell editing for long-term hearing recovery lay the foundation for the development of treatment for patients with DFNA50 caused by MIR96 mutations.


Subject(s)
Dependovirus , Gene Editing , Hearing Loss , MicroRNAs , Mutation , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Editing/methods , Humans , Mutation/genetics , Hearing Loss/genetics , Hearing Loss/therapy , Dependovirus/genetics , Mice , CRISPR-Cas Systems/genetics , Cochlea/metabolism , Genetic Therapy/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Base Sequence , Hearing
7.
JASA Express Lett ; 4(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39028922

ABSTRACT

The peaked cochlear tonotopic response does not show the typical phenomenology of a resonant system. Simulations of a 2 D viscous model show that the position of the peak is determined by the competition between a sharp pressure boost due to the increase in the real part of the wavenumber as the forward wave enters the short-wave region, and a sudden increase in the viscous losses, partly counteracted by the input power provided by the outer hair cells. This viewpoint also explains the peculiar experimental behavior of the cochlear admittance (broadly tuned and almost level-independent) in the peak region.


Subject(s)
Cochlea , Cochlea/physiology , Humans , Models, Biological , Animals , Hearing/physiology , Computer Simulation , Hair Cells, Auditory, Outer/physiology
8.
Sci Adv ; 10(30): eadk9878, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047106

ABSTRACT

Cisplatin is a widely used anticancer drug with notable side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced toxicities, we used PLX3397, a U.S. Food and Drug Administration-approved inhibitor of the colony-stimulating factor 1 receptor, to eliminate tissue-resident macrophages. Mice treated with cisplatin alone had considerable hearing loss (ototoxicity) and kidney injury (nephrotoxicity). Macrophage ablation resulted in significantly reduced hearing loss and had greater outer hair cell survival. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together, our data indicate that ablation of tissue-resident macrophages represents an important strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.


Subject(s)
Cisplatin , Macrophages , Ototoxicity , Cisplatin/adverse effects , Cisplatin/toxicity , Animals , Macrophages/drug effects , Macrophages/metabolism , Ototoxicity/etiology , Ototoxicity/prevention & control , Mice , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Hearing Loss/chemically induced , Hearing Loss/prevention & control , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Mice, Inbred C57BL , Aminopyridines , Pyrroles
9.
Sci Rep ; 14(1): 15296, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961203

ABSTRACT

Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.


Subject(s)
Blast Injuries , Hair Cells, Vestibular , Spiral Ganglion , Animals , Spiral Ganglion/drug effects , Spiral Ganglion/pathology , Rats , Blast Injuries/prevention & control , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Male , Oxidation-Reduction , Rats, Sprague-Dawley , Cochlea/drug effects , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/pathology , Oxidative Stress/drug effects , Hearing Loss, Noise-Induced/prevention & control , Hearing Loss, Noise-Induced/pathology
10.
Cell Death Dis ; 15(7): 531, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060244

ABSTRACT

Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Due to the heterogeneity of causes for SNHL, effective treatment options remain scarce, creating an unmet need for novel drugs in the field of otology. Cochlear implantation (CI) currently is the only established method to restore hearing function in profound SNHL and deaf patients. The cochlear implant bypasses the non-functioning sensory hair cells (HCs) and electrically stimulates the neurons of the cochlear nerve. CI also benefits patients with residual hearing by combined electrical and auditory stimulation. However, the insertion of an electrode array into the cochlea induces an inflammatory response, characterized by the expression of pro-inflammatory cytokines, upregulation of reactive oxygen species, and apoptosis and necrosis of HCs, putting residual hearing at risk. Here, we characterize the small molecule AC102, a pyridoindole, for its protective effects on residual hearing in CI. In a gerbil animal model of CI, AC102 significantly improves the recovery of hearing thresholds across multiple frequencies and confines the cochlear trauma to the directly mechanically injured area. In addition, AC102 significantly preserves auditory nerve fibers and inner HC synapses throughout the whole cochlea. In vitro experiments in an ethanol challenged HT22 cell-line revealed significant and dose-responsive anti-apoptotic effects following the treatment of with AC102. Further, AC102 treatment resulted in significant downregulation of the expression of pro-inflammatory cytokines in an organotypic ex vivo model of electrode insertion trauma (EIT). These results suggest that AC102's effects are likely elicited during the inflammatory phase of EIT and mediated by anti-apoptotic and anti-inflammatory properties, highlighting AC102 as a promising compound for hearing preservation during CI. Moreover, since the inflammatory response in CI shares similarities to that in other etiologies of SNHL, AC102 may be inferred as a potential general treatment option for various inner ear conditions.


Subject(s)
Cochlear Implantation , Disease Models, Animal , Gerbillinae , Hearing , Animals , Cochlear Implantation/methods , Hearing/drug effects , Cochlea/drug effects , Cochlea/pathology , Hearing Loss, Sensorineural , Indoles/pharmacology , Indoles/therapeutic use , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism
11.
Neurosci Lett ; 836: 137897, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39004114

ABSTRACT

The efficacy of vitamin C in age-related hearing loss, i.e., presbycusis, remains debatable. On a separate note, inflammation induced by the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is involved in the progression of presbycusis. In this study, we investigated the effect of vitamin C on male C57BL/6 mice's presbycusis and NLRP3 inflammasome. The results showed that vitamin C treatment improved hearing, reduced the production of inflammatory factors, inhibited NLRP3 inflammasome activation, and decreased cytosolic mitochondrial DNA (mtDNA) in the C57BL/6 mouse cochlea, inferior colliculus, and auditory cortex. According to this study, vitamin C protects auditory function in male C57BL/6 presbycusis mice through reducing mtDNA release, inhibiting the NLRP3 inflammasome activation in the auditory pathway. Our study provides a theoretical basis for applying vitamin C to treat presbycusis.


Subject(s)
Ascorbic Acid , DNA, Mitochondrial , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Presbycusis , Animals , Male , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Ascorbic Acid/administration & dosage , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Presbycusis/metabolism , Presbycusis/prevention & control , Inflammasomes/metabolism , Inflammasomes/drug effects , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/drug effects , Mice , Cochlea/drug effects , Cochlea/metabolism , Auditory Cortex/drug effects , Auditory Cortex/metabolism
12.
Otol Neurotol ; 45(7): 810-817, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38995724

ABSTRACT

HYPOTHESIS: Transforming growth factor beta-1 (TGFß-1) and connective tissue growth factor (CTGF) are upregulated in the implanted human cochlea. BACKGROUND: Cochlear implantation can lead to insertion trauma and intracochlear new tissue formation, which can detrimentally affect implant performance. TGFß-1 and CTGF are profibrotic proteins implicated in various pathologic conditions, but little is known about their role in the cochlea. The present study aimed to characterize the expression of these proteins in the human implanted cochlea. METHODS: Archival human temporal bones (HTB) acquired from 12 patients with previous CI and histopathological evidence of new tissue formation as well as surgical samples of human intracochlear scar tissue surrounding the explanted CI were used in this study. Histopathologic analysis of fibrosis and osteoneogenesis was conducted using H&E. Protein expression was characterized using immunofluorescence. RNA expression from surgical specimens of fibrotic tissue surrounding the CI was quantified using qRT-PCR. RESULTS: TGFß-1 and CTGF protein expressions were upregulated in the areas of fibrosis and osteoneogenesis surrounding the CI HTB. Similarly, surgical samples demonstrated upregulation of protein and mRNA expression of TGFß-1 and mild upregulation of CTGF compared with control. TGFß-1 was expressed diffusely within the fibrous capsule, whereas CTGF was expressed in the thickened portion toward the modiolus and the fibrosis-osteoneogensis junction. CONCLUSION: To our knowledge, this is the first study to demonstrate increased expression of TGFß-1 and CTGF in the human implanted cochlea and may provide better understanding of the mechanism behind this pathogenic process to better develop future mitigating interventions.


Subject(s)
Cochlea , Connective Tissue Growth Factor , Transforming Growth Factor beta1 , Humans , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Cochlea/metabolism , Male , Middle Aged , Female , Cochlear Implantation , Cochlear Implants , Temporal Bone/metabolism , Temporal Bone/pathology , Fibrosis , Aged , Adult
13.
Clin Neurophysiol ; 165: 44-54, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959535

ABSTRACT

OBJECTIVE: This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS: The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS: The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS: The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE: Our findings shed new light on the analytical methods of ABR for quantifying CS.


Subject(s)
Acoustic Stimulation , Cochlea , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Hidden , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Acoustic Stimulation/methods , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Hidden/diagnosis , Hearing Loss, Hidden/physiopathology
14.
Clin Neurol Neurosurg ; 244: 108402, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971126

ABSTRACT

BACKGROUND: Vestibular schwannoma (VS) is a benign tumor of the vestibular nerve. Flair-attenuated inversion recovery (FLAIR) of magnetic resonance imaging (MRI) images are sensitive in detecting high protein contents of fluids. OBJECTIVES: To investigate the association between signal intensity (SI) on FLAIR images and audiovestibular findings in patients with VS. METHODS: Medical records of twenty-five patients with VS were retrospectively analyzed. RESULTS: Larger tumors were associated with increased FLAIR SI of the cochlea, vestibule, and semicircular canal (SCC) on the affected side compared to those of the unaffected side. Pure-tone audiometry (PTA), and speech audiometry were associated with the SI of the affected cochlea. There was no significant correlation between the SI of the vestibule and vestibular evoked myogenic potential, SI of the SCC, and caloric test or video head impulse test results. CONCLUSION: Our study suggests that tumor size was significantly associated with high SI on FLAIR imaging, and audiological findings were associated with the SI of the affected cochlea. Further studies with larger cohorts are required to confirm the association between vestibular function and FLAIR imaging in VS.


Subject(s)
Magnetic Resonance Imaging , Neuroma, Acoustic , Humans , Neuroma, Acoustic/diagnostic imaging , Neuroma, Acoustic/complications , Female , Middle Aged , Male , Magnetic Resonance Imaging/methods , Adult , Aged , Retrospective Studies , Audiometry, Pure-Tone , Vestibular Evoked Myogenic Potentials/physiology , Vestibule, Labyrinth/diagnostic imaging , Vestibule, Labyrinth/physiopathology , Cochlea/diagnostic imaging , Young Adult , Semicircular Canals/diagnostic imaging , Semicircular Canals/physiopathology
15.
Biomed Eng Online ; 23(1): 65, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987764

ABSTRACT

BACKGROUND: Cochlear implants (CI) are implantable medical devices that enable the perception of sounds and the understanding of speech by electrically stimulating the auditory nerve in case of inner ear damage. The stimulation takes place via an array of electrodes surgically inserted in the cochlea. After CI implantation, cone beam computed tomography (CBCT) is used to evaluate the position of the electrodes. Moreover, CBCT is used in research studies to investigate the relationship between the position of the electrodes and the hearing outcome of CI user. In clinical routine, the estimation of the position of the CI electrodes is done manually, which is very time-consuming. RESULTS: The aim of this study was to optimize procedures of automatic electrode localization from CBCT data following CI implantation. For this, we analyzed the performance of automatic electrode localization for 150 CBCT data sets of 10 different types of electrode arrays. Our own implementation of the method by Noble and Dawant (Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Springer, pp 152-159, 2015. https://doi.org/10.1007/978-3-319-24571-3_19 ) for automated electrode localization served as a benchmark for evaluation. Differences in the detection rate and the localization accuracy across types of electrode arrays were evaluated and errors were classified. Based on this analysis, we developed a strategy to optimize procedures of automatic electrode localization. It was shown that particularly distantly spaced electrodes in combination with a deep insertion can lead to apical-basal confusions in the localization procedure. This confusion prevents electrodes from being detected or assigned correctly, leading to a deterioration in localization accuracy. CONCLUSIONS: We propose an extended cost function for automatic electrode localization methods that prevents double detection of electrodes to avoid apical-basal confusions. This significantly increased the detection rate by 11.15 percent points and improved the overall localization accuracy by 0.53 mm (1.75 voxels). In comparison to other methods, our proposed cost function does not require any prior knowledge about the individual cochlea anatomy.


Subject(s)
Automation , Cochlear Implants , Cone-Beam Computed Tomography , Electrodes, Implanted , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Cochlear Implantation/instrumentation , Cochlea/diagnostic imaging
16.
Otol Neurotol ; 45(7): e525-e531, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38995721

ABSTRACT

OBJECTIVE: Determine if superior canal dehiscence (SCD) found on flat-panel CT increases the risk for other defects in the otic capsule. STUDY DESIGN: Retrospective cohort study. SETTING: Tertiary care center. PATIENTS: One hundred ears (50 with SCD and 50 matched controls without SCD). INTERVENTIONS: Flat-panel CT imaging. MAIN OUTCOME MEASURES: (1) Prevalence of other dehiscences in SCD ears, (2) dehiscences in controls, and (3) otic capsule thickness in other reported dehiscence locations (cochlea-carotid, lateral semicircular canal [SCC] and mastoid, facial nerve-lateral SCC, vestibular aqueduct, posterior SCC-jugular bulb, posterior SCC-posterior fossa). Between-group comparisons were considered significant at p < 0.007 after applying the Bonferroni correction for multiple comparisons. RESULTS: Not including the SCD, there was a mean of 0.04 additional dehiscences in the SCD group (n = 2/50, 4%) and 0.04 non-SCD dehiscences in the controls (n = 2/50, 4%, p > 0.007). In the SCD group, there was one dehiscence between the cochlea and carotid artery and one between the posterior SCC and posterior fossa. The control group had one enlarged vestibular aqueduct and one dehiscence between the facial nerve and lateral SCC. As a group, SCD ears had wider vestibular aqueducts (0.68 ± 0.20 vs 0.51 ± 0.30 mm, p < 0.007) and thinner bone between the posterior SCC and posterior fossa (3.12 ± 1.43 vs 4.34 ± 1.67 mm, p < 0.007). The bone between the facial nerve and lateral SCC was thicker in SCD ears (0.77 ± 0.23 vs 0.55 ± 0.27 mm, p < 0.007) and no different for cochlea-carotid, and lateral SCC and mastoid (p > 0.007). CONCLUSIONS: SCD does not increase the likelihood of a second dehiscence in the same otic capsule. SCD patients may have congenitally thinner otic capsule bones compared to controls, particularly near the posterior SCC, where the vestibular aqueduct may be enlarged.


Subject(s)
Semicircular Canal Dehiscence , Semicircular Canals , Tomography, X-Ray Computed , Humans , Retrospective Studies , Male , Female , Middle Aged , Semicircular Canals/diagnostic imaging , Semicircular Canals/pathology , Adult , Semicircular Canal Dehiscence/diagnostic imaging , Semicircular Canal Dehiscence/pathology , Aged , Cohort Studies , Vestibular Aqueduct/diagnostic imaging , Vestibular Aqueduct/pathology , Vestibular Aqueduct/abnormalities , Cochlea/diagnostic imaging , Cochlea/pathology , Mastoid/diagnostic imaging , Mastoid/pathology
17.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000390

ABSTRACT

The motor protein prestin, found in the inner ear's outer hair cells (OHCs), is responsible for high sensitivity and sharp frequency selectivity in mammalian hearing. Some studies have suggested that prestin could be a serological biomarker for cochlear damage, as OHCs are highly vulnerable to damage from various sources. However, the reported data are inconsistent and lack appropriate negative controls. To investigate whether prestin can be used as a serological biomarker for cochlear damage or stress, we measured prestin quantities in the bloodstreams of mice using ELISA kits from different companies. Wildtype (WT) mice were exposed to different ototoxic treatments, including noise exposure and ototoxic reagents that rapidly kill OHCs. Prestin-knockout (KO) mice were used as a negative control. Our data show that some ELISA kits were not able to detect prestin specifically. The ELISA kit that could detect the prestin protein from cochlear homogenates failed to detect prestin in the bloodstream, despite there being significant damage to OHCs in the cochleae. Furthermore, the optical densities of the serum samples, which correlate to prestin quantities, were significantly influenced by hemolysis in the samples. In conclusion, Prestin from OHCs is not a sensitive and reliable serological biomarker for detecting cochlear damage in mice using ELISA.


Subject(s)
Biomarkers , Hair Cells, Auditory, Outer , Molecular Motor Proteins , Animals , Biomarkers/blood , Mice , Hair Cells, Auditory, Outer/pathology , Hair Cells, Auditory, Outer/metabolism , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/genetics , Mice, Knockout , Cochlea/pathology , Cochlea/metabolism , Enzyme-Linked Immunosorbent Assay , Mice, Inbred C57BL
18.
PLoS One ; 19(7): e0304027, 2024.
Article in English | MEDLINE | ID: mdl-39018315

ABSTRACT

Rhythms are the most natural cue for temporal anticipation because many sounds in our living environment have rhythmic structures. Humans have cortical mechanisms that can predict the arrival of the next sound based on rhythm and periodicity. Herein, we showed that temporal anticipation, based on the regularity of sound sequences, modulates peripheral auditory responses via efferent innervation. The medial olivocochlear reflex (MOCR), a sound-activated efferent feedback mechanism that controls outer hair cell motility, was inferred noninvasively by measuring the suppression of otoacoustic emissions (OAE). First, OAE suppression was compared between conditions in which sound sequences preceding the MOCR elicitor were presented at regular (predictable condition) or irregular (unpredictable condition) intervals. We found that OAE suppression in the predictable condition was stronger than that in the unpredictable condition. This implies that the MOCR is strengthened by the regularity of preceding sound sequences. In addition, to examine how many regularly presented preceding sounds are required to enhance the MOCR, we compared OAE suppression within stimulus sequences with 0-3 preceding tones. The OAE suppression was strengthened only when there were at least three regular preceding tones. This suggests that the MOCR was not automatically enhanced by a single stimulus presented immediately before the MOCR elicitor, but rather that it was enhanced by the regularity of the preceding sound sequences.


Subject(s)
Acoustic Stimulation , Cochlea , Humans , Male , Adult , Female , Young Adult , Cochlea/physiology , Olivary Nucleus/physiology , Reflex/physiology , Sound , Auditory Perception/physiology , Otoacoustic Emissions, Spontaneous/physiology , Reflex, Acoustic/physiology
19.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928015

ABSTRACT

Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Mice , Administration, Oral , Hearing Loss, Noise-Induced/drug therapy , Male , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , MAP Kinase Signaling System/drug effects , Female , Disease Models, Animal , Cochlea/drug effects , Cochlea/metabolism
20.
Hear Res ; 450: 109050, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38852534

ABSTRACT

Since the presence of tinnitus is not always associated with audiometric hearing loss, it has been hypothesized that hidden hearing loss may act as a potential trigger for increased central gain along the neural pathway leading to tinnitus perception. In recent years, the study of hidden hearing loss has improved with the discovery of cochlear synaptopathy and several objective diagnostic markers. This study investigated three potential markers of peripheral hidden hearing loss in subjects with tinnitus: extended high-frequency audiometric thresholds, the auditory brainstem response, and the envelope following response. In addition, speech intelligibility was measured as a functional outcome measurement of hidden hearing loss. To account for age-related hidden hearing loss, participants were grouped according to age, presence of tinnitus, and audiometric thresholds. Group comparisons were conducted to differentiate between age- and tinnitus-related effects of hidden hearing loss. All three markers revealed age-related differences, whereas no differences were observed between the tinnitus and non-tinnitus groups. However, the older tinnitus group showed improved performance on low-pass filtered speech in noise tests compared to the older non-tinnitus group. These low-pass speech in noise scores were significantly correlated with tinnitus distress, as indicated using questionnaires, and could be related to the presence of hyperacusis. Based on our observations, cochlear synaptopathy does not appear to be the underlying cause of tinnitus. The improvement in low-pass speech-in-noise could be explained by enhanced temporal fine structure encoding or hyperacusis. Therefore, we recommend that future tinnitus research takes into account age-related factors, explores low-frequency encoding, and thoroughly assesses hyperacusis.


Subject(s)
Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Noise , Speech Perception , Tinnitus , Humans , Tinnitus/physiopathology , Tinnitus/diagnosis , Middle Aged , Male , Female , Adult , Aged , Noise/adverse effects , Age Factors , Speech Intelligibility , Hyperacusis/physiopathology , Hyperacusis/diagnosis , Acoustic Stimulation , Audiometry, Pure-Tone , Young Adult , Surveys and Questionnaires , Perceptual Masking , Hearing , Audiometry, Speech , Cochlea/physiopathology , Hearing Loss/physiopathology , Hearing Loss/diagnosis , Hearing Loss, Hidden
SELECTION OF CITATIONS
SEARCH DETAIL