Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.177
Filter
1.
J Chem Phys ; 160(24)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38912631

ABSTRACT

We study, through molecular dynamics simulations, three aqueous solutions with one lysozyme protein and three different concentrations of trehalose and dimethyl sulfoxide (DMSO). We analyze the structural and dynamical properties of the protein hydration water upon cooling. We find that trehalose plays a major role in modifying the structure of the network of HBs between water molecules in the hydration layer of the protein. The dynamics of hydration water presents, in addition to the α-relaxation, typical of glass formers, a slower long-time relaxation process, which greatly slows down the dynamics of water, particularly in the systems with trehalose, where it becomes dominant at low temperatures. In all the solutions, we observe, from the behavior of the α-relaxation times, a shift of the Mode Coupling Theory crossover temperature and the fragile-to-strong crossover temperature toward higher values with respect to bulk water. We also observe a strong-to-strong crossover from the temperature behavior of the long-relaxation times. In the aqueous solution with only DMSO, the transition shifts to a lower temperature than in the case with only lysozyme reported in the literature. We observe that the addition of trehalose to the mixture has the opposite effect of restoring the original location of the strong-to-strong crossover. In all the solutions analyzed in this work, the observed temperature of the protein dynamical transition is slightly shifted at lower temperatures than that of the strong-to-strong crossover, but their relative order is the same, showing a correlation between the motion of the protein and that of the hydration water.


Subject(s)
Dimethyl Sulfoxide , Molecular Dynamics Simulation , Muramidase , Trehalose , Water , Trehalose/chemistry , Dimethyl Sulfoxide/chemistry , Muramidase/chemistry , Water/chemistry , Cryoprotective Agents/chemistry , Cryopreservation/methods , Cold Temperature
2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928132

ABSTRACT

Ruthenium chloride (RuCl3) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl3 has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl3 inhibition of the fibrinogenolytic effects of Crotalus atrox venom could be modulated by vehicle composition in human plasma. Venom was exposed to RuCl3 in 0.9% NaCl, phosphate-buffered saline (PBS), or 0.9% NaCl containing 1% dimethyl sulfoxide (DMSO). RuCl3 inhibited venom-mediated delay in the onset of thrombus formation, decreased clot growth velocity, and decreased clot strength. PBS and DMSO enhanced the effects of RuCl3. It is concluded that while a Ru-based cation is responsible for significant inhibition of venom activity, a combination of Ru-based ions containing phosphate and DMSO enhances RuCl3-mediated venom inhibition. Additional investigation is indicated to determine what specific Ru-containing molecules cause venom inhibition and what other combinations of inorganic/organic compounds may enhance the antivenom effects of RuCl3.


Subject(s)
Antivenins , Blood Coagulation , Crotalid Venoms , Crotalus , Dimethyl Sulfoxide , Humans , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/chemistry , Antivenins/pharmacology , Antivenins/chemistry , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/pharmacology , Animals , Blood Coagulation/drug effects , Ruthenium Compounds/pharmacology , Ruthenium Compounds/chemistry , Sodium Chloride/pharmacology , Sodium Chloride/chemistry , Thrombelastography , Venomous Snakes
3.
J Mater Chem B ; 12(26): 6410-6423, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38855928

ABSTRACT

Amino acids show promise as versatile biomolecules for creating a variety of functional biomaterials. Previously, we discovered a novel amino acid reaction, in which a single amino acid can form browning species in a simple solvent mixture comprising DMSO and acetone at room temperature. In the present study, we initially conducted a comprehensive analysis of 190 pairs of binary amino acids (i.e., all the possible pairwise combinations out of 20 amino acids) and identified several surprising combinations that exhibited synergistic browning effects. Particularly, cysteine-lysine and cysteine-arginine pairs exhibited pronounced browning in DMSO/acetone cosolvent solutions. We hypothesize that the coloured species result from the formation of extended, hydrophobic molecules with highly conjugated systems, arising from extensive condensation reactions between amino acids. Subsequently, we aimed at developing a nano-platform based on this newly discovered amino acid reaction. We demonstrate that through a nanoprecipitation process (solvent-shifting), spherical nanoparticles with sizes ranging from 100 to 200 nm can be produced, in the presence of ferric ions added to the water phase. Through systematic optimization and comprehensive characterization, the final product is a zwitterionic, charge-reversible nanoparticle featuring three functional groups on its surface: carboxylates, amines, and thiols. Furthermore, it possesses mild antioxidant activity, making it a new type of nano-antioxidant. Finally, we present preliminary results highlighting the potential of using this new nanomaterial as a delivery system for polynucleotides. In conclusion, the paper introduces a novel class of amino acid-derived nanoparticles with significant promise for future biomedical applications.


Subject(s)
Amino Acids , Amino Acids/chemistry , Nanoparticles/chemistry , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Surface Properties , Acetone/chemistry , Dimethyl Sulfoxide/chemistry
4.
Biophys Chem ; 311: 107272, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824845

ABSTRACT

In the presented work, a study on the solubility and intermolecular interactions of l-serine and L-cysteine was carried out in binary mixtures of H2O + dimethylformamide (DMF), H2O + dimethylsulfoxide (DMSO), and H2O + acetonitrile (ACN) in the temperature range of T = 288.15 K to 308.15 K. l-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN > water-DMSO > water-DMF for l-serine, and water-DMF > water-DMSO > water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent-solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.


Subject(s)
Acetonitriles , Cysteine , Dimethyl Sulfoxide , Dimethylformamide , Serine , Solubility , Temperature , Water , Dimethyl Sulfoxide/chemistry , Serine/chemistry , Acetonitriles/chemistry , Water/chemistry , Cysteine/chemistry , Dimethylformamide/chemistry , Thermodynamics , Solvents/chemistry
5.
Int J Biol Macromol ; 271(Pt 1): 132718, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821786

ABSTRACT

The CO2-based reversible ionic liquid solution of 1,1,3,3-tetramethylguanidine (TMG) and ethylene glycol (EG) in dimethyl sulfoxide (DMSO) after capturing CO2, (2[TMGH]+[O2COCH2CH2OCO2]2-/DMSO (χRILs = 0.1), provides a sustainable and effective platform for cellulose dissolution and homogeneous utilization. Highly porous cellulose aerogel beads and monoliths were successfully prepared via a sol-gel process by extruding cellulose solution into different coagulation baths (NaOH aqueous solution or alcohols) and exposing the cellulose solution in open environment, respectively, and followed by different drying techniques, including supercritical CO2-drying, freeze-drying and air-drying. The effect of the coagulation baths and drying protocols on the multi-scale structure of the as-prepared cellulose aerogel beads and monoliths were studied in detail, and the sol-gel transition mechanism was also studied by the solvatochromic parameters determination. High specific surface area of 252 and 207 m2/g for aerogel beads and monoliths were achieved, respectively. The potential of cellulose aerogels in dye adsorption was demonstrated.


Subject(s)
Carbon Dioxide , Cellulose , Gels , Ionic Liquids , Cellulose/chemistry , Ionic Liquids/chemistry , Carbon Dioxide/chemistry , Gels/chemistry , Porosity , Adsorption , Guanidines/chemistry , Solutions , Ethylene Glycol/chemistry , Dimethyl Sulfoxide/chemistry
6.
Cryo Letters ; 45(4): 231-239, 2024.
Article in English | MEDLINE | ID: mdl-38809787

ABSTRACT

BACKGROUND: Transformation of state diagrams of cryoprotectant solutions under the influence of weak intramolecular interactions was considered. MATERIALS AND METHODS: Phase states of aqueous glycerol and DMSO solutions within temperature range +25 to -150 degree С were studied using method of volumetric scanning tensodilatometry. Temperatures below which hydrogen bonds significantly affect crystallization-melting kinetics of such solutions were determined. RESULTS: Principles for plotting of state diagram for binary solutions with weak intermolecular interaction of the components were set up. The study demonstrates that in such solutions formation of clusters based on ice microcrystals and cryoprotectant occurs. Based on the obtained results, state diagrams for glycerol and DMSO aqueous solutions were plotted. These diagrams include area of cluster phase existence and differ fundamentally from those describing eutectic crystallization. CONCLUSION: Nanostructures occurring in cryoprotectant solutions during their cooling were analyzed. Difference between these structures and classical solid phase eutectics were demonstrated. Doi.org/10.54680/fr24410110712.


Subject(s)
Cryoprotective Agents , Crystallization , Dimethyl Sulfoxide , Glycerol , Hydrogen Bonding , Cryoprotective Agents/chemistry , Glycerol/chemistry , Dimethyl Sulfoxide/chemistry , Solutions , Water/chemistry , Phase Transition
7.
Dalton Trans ; 53(20): 8535-8540, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727007

ABSTRACT

The reactivity of the anticancer drug picoplatin (cis-amminedichlorido(2-methylpyridine)platinum(II) complex) with the model proteins hen egg white lysozyme (HEWL) and bovine pancreatic ribonuclease (RNase A) was investigated by electrospray ionisation mass spectrometry (ESI MS) and X-ray crystallography. The data were compared with those previously obtained for the adducts of these proteins with cisplatin, carboplatin and oxaliplatin under the same experimental conditions. ESI-MS data show binding of Pt to both proteins, with fragments retaining the 2-methylpyridine ligand and, possibly, a chloride ion. X-ray crystallography identifies different binding sites on the two proteins, highlighting a different behaviour of picoplatin in the absence or presence of dimethyl sulfoxide (DMSO). Metal-containing fragments bind to HEWL close to the side chains of His15, Asp18, Asp119 and both Lys1 and Glu7, whereas they bind to RNase A on the side chain of His12, Met29, His48, Asp53, Met79, His105 and His119. The data suggest that the presence of DMSO favours the loss of 2-methylpyridine and alters the ability of the Pt compound to bind to the two proteins. With both proteins, picoplatin appears to behave similarly to cisplatin and carboplatin when dissolved in DMSO, whereas it behaves more like oxaliplatin in the absence of the coordinating solvent. This study provides important insights into the pharmacological profile of picoplatin and supports the conclusion that coordinating solvents should not be used to evaluate the biological activities of Pt-based drugs.


Subject(s)
Muramidase , Organoplatinum Compounds , Ribonuclease, Pancreatic , Muramidase/chemistry , Muramidase/metabolism , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/metabolism , Animals , Crystallography, X-Ray , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Cattle , Protein Binding , Binding Sites , Models, Molecular , Chickens , Spectrometry, Mass, Electrospray Ionization , Dimethyl Sulfoxide/chemistry , Carboplatin/chemistry , Carboplatin/metabolism
8.
Pak J Pharm Sci ; 37(1): 95-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741405

ABSTRACT

Hydrophilic drugs could be incorporated into the skin surface by manes of Lipogel. This study aimed to prepare miconazole lipogel with natural ingredients to enhance drug permeability using dimethyl Sulfoxide (DMSO). The miconazole lipogels, A1 (without DMSO) and A2 (with DMSO) were formulated and evaluated for organoleptic evaluation, pH, viscosity, stability studies, freeze-thawing, drug release profile and drug permeation enhancement. Results had stated that prepared lipogel's pH falls within the acceptable range required for topical delivery (4 to 6) while both formulations show good results in organoleptic evaluation. The A2 formulation containing DMSO shows better permeation of miconazole (84.76%) on the artificial skin membrane as compared to A1 lipogel formulation (50.64%). In in-vitro drug release studies, A2 for-mulation showed 87.48% drug release while A1 showed just 60.1% drug release from lipogel. Stability studies were performed on model formulations under environmental conditions and both showed good spreadibility, stable pH, free of grittiness and good consistency in formulation. The results concluded that A2 formulation containing DMSO shows better results as compared to DMSO-free drug lipogel.


Subject(s)
Dimethyl Sulfoxide , Drug Liberation , Gels , Miconazole , Permeability , Miconazole/administration & dosage , Miconazole/chemistry , Miconazole/pharmacokinetics , Dimethyl Sulfoxide/chemistry , Viscosity , Drug Stability , Hydrogen-Ion Concentration , Skin Absorption/drug effects , Chemistry, Pharmaceutical , Drug Compounding , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Cutaneous
9.
Biochem Biophys Res Commun ; 712-713: 149936, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38640736

ABSTRACT

As cisplatin is one of the most broadly used chemotherapeutics, it is widely tested in vitro & in vivo assays, involving attempts to better understand its mechanism of action, develop strategies to mitigate its toxicity, or develop new drug combinations. Presently, for in vitro assays, dissolving cisplatin in dimethyl sulfoxide (DMSO) is discouraged due to its significant reduction in drug activity, Alternatively, inorganic solvents like normal saline (NS) are recommended. However, this approach is still problematic, including 1) instability of cisplatin in NS, 2) limited solubility, 3) the need to avoid long-term storage at -80 °C (or -20 °C) after dissolving, and 4) complications when combining with other DMSO-solubilized compounds. Here, we report a DMSO-HCl mixture as an alternative solvent to address these challenges. Cisplatin in DMSO-HCl not only retains comparable drug activity to cisplatin in NS but also exhibits increased stability over an extended period. Our brief report sheds light on cisplatin action, providing insights to aid in cancer research in vitro.


Subject(s)
Antineoplastic Agents , Cisplatin , Dimethyl Sulfoxide , Solvents , Cisplatin/pharmacology , Cisplatin/chemistry , Solvents/chemistry , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Solubility , Drug Stability , Cell Line, Tumor , Hydrogen-Ion Concentration
10.
Int J Biol Macromol ; 268(Pt 1): 131741, 2024 May.
Article in English | MEDLINE | ID: mdl-38649083

ABSTRACT

Glycogen, a complex branched glucose polymer, is responsible for sugar storage in blood glucose homeostasis. It comprises small ß particles bound together into composite α particles. In diabetic livers, α particles are fragile, breaking apart into smaller particles in dimethyl sulfoxide, DMSO; they are however stable in glycogen from healthy animals. We postulate that the bond between ß particles in α particles involves hydrogen bonding. Liver-glycogen fragility in normal and db/db mice (an animal model for diabetes) is compared using various hydrogen-bond breakers (DMSO, guanidine and urea) at different temperatures. The results showed different degrees of α-particle disruption. Disrupted glycogen showed changes in the mid-infra-red spectrum that are related to hydrogen bonds. While glycogen α-particles are only fragile under harsh, non-physiological conditions, these results nevertheless imply that the bonding between ß particles in α particles is different in diabetic livers compared to healthy, and is probably associated with hydrogen bonding.


Subject(s)
Hydrogen Bonding , Animals , Mice , Dimethyl Sulfoxide/chemistry , Liver Glycogen/metabolism , Urea/chemistry , Guanidine/chemistry , Guanidine/pharmacology , Liver/metabolism , Male
11.
J Phys Chem B ; 128(16): 3904-3909, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38613503

ABSTRACT

Recently, zwitterions have been proposed as novel cryoprotectants. However, some cells are difficult to cryopreserve using aqueous zwitterion solutions alone. We investigated here the reason for cell damage in such cells, and it was the osmotic pressure after freeze concentration. Furthermore, the addition of dimethyl sulfoxide (DMSO) has been reported to improve the cryoprotective effect in such cells: the zwitterion/DMSO aqueous solution shows a higher cryoprotective effect than the commercial cryoprotectant. This study also clarified the mechanisms underlying the improvement in a cryoprotective effect. The addition of cell-permeable DMSO alleviated the osmotic pressure after the freeze concentration. This alleviation was also found to be a key factor for cryopreserving cell spheroids, while there has been no insight into this phenomenon.


Subject(s)
Cryopreservation , Cryoprotective Agents , Dimethyl Sulfoxide , Osmotic Pressure , Dimethyl Sulfoxide/chemistry , Dimethyl Sulfoxide/pharmacology , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Osmotic Pressure/drug effects , Humans , Solutions , Cell Survival/drug effects
12.
Int J Biol Macromol ; 267(Pt 2): 131581, 2024 May.
Article in English | MEDLINE | ID: mdl-38615866

ABSTRACT

Using Escherichia coli as a model, this manuscript delves into the intricate interactions between dimethyl sulfoxide (DMSO) and membranes, cellular macromolecules, and the effects on various aspects of bacterial physiology. Given DMSO's wide-ranging use as a solvent in microbiology, we investigate the impacts of both non-growth inhibitory (1.0 % and 2.5 % v/v) and slightly growth-inhibitory (5.0 % v/v) concentrations of DMSO. The results demonstrate that DMSO causes alterations in bacterial membrane potential, influences the electrochemical characteristics of the cell surface, and exerts substantial effects on the composition and structure of cellular biomolecules. Genome-wide gene expression data from DMSO-treated E. coli was used to further investigate and bolster the results. The findings of this study provide valuable insights into the complex relationship between DMSO and biological systems, with potential implications in drug delivery and cellular manipulation. However, it is essential to exercise caution when utilizing DMSO to enhance the solubility and delivery of bioactive compounds, as even at low concentrations, DMSO exerts non-inert effects on cellular macromolecules and processes.


Subject(s)
Cell Membrane , Dimethyl Sulfoxide , Escherichia coli , Dimethyl Sulfoxide/pharmacology , Dimethyl Sulfoxide/chemistry , Escherichia coli/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Dose-Response Relationship, Drug , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Macromolecular Substances/pharmacology , Membrane Potentials/drug effects
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124265, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38626674

ABSTRACT

In recent years, extensive research has been directed towards understanding the interactions between various zinc complexes with DNA, specifically delving into their intercalation and binding behaviors. The binding of zinc complexes to DNA is particularly intriguing due to their distinctive intercalating capabilities. This study unveils a remarkable phenomenon observed with a specific Zn complex, ([B-Zn-N3], where B is a Schiff base ligand), during DNA intercalation investigations in the popular DMSO-Water binary solvent mixture. An unanticipated observation revealed time-dependent changes in the UV-visible absorption spectroscopic studies, coupled with the existence of an isosbestic point. This observation questions the stability of the intercalating agent itself during the intercalation process. The emergence of a decomposed product during the intercalation study has been confirmed through various analytical techniques, including CHN analysis, MALDI mass, XPS, Raman spectroscopy, and Powder XRD. The change in the chemical species on intercalation is further substantiated by theoretical studies, adding depth to our understanding of the intricate dynamics at play during DNA intercalation with the [B-Zn-N3] complex in the DMSO-Water system.


Subject(s)
DNA , Dimethyl Sulfoxide , Intercalating Agents , Water , Dimethyl Sulfoxide/chemistry , Intercalating Agents/chemistry , DNA/chemistry , DNA/metabolism , Water/chemistry , Spectrum Analysis, Raman , Zinc/chemistry , Spectrophotometry, Ultraviolet , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Schiff Bases/chemistry
14.
Anal Methods ; 16(19): 3081-3087, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38685882

ABSTRACT

Determination of PEGylated proteins' intact mass by mass spectrometry is challenging due to the molecules' large size, excessive charges, and instrument limitations. Previous efforts have been reported. However, signal variability, ion coalescence, and a generally low degree of robustness have been observed. In this work, we have explored the capabilities of post-column infusion of dimethyl sulfoxide (DMSO) following reversed-phase liquid chromatography-mass spectrometry (RP-LCMS) to determine PEG-filgrastim' intact mass, and to characterize its PEG moiety. The method was optimized around reproducibility (six preparations, and three injection replicates) with an in-house prepared PEG-filgrastim standard. The method showed a mass accuracy of ≤1.2 Da. The average molecular weight (MWEO=483) was 40 147.9 Da. The number average molecular weight (Mn) and the weight average molecular weight (Mw) were observed to be 40 101.1 and 40 113.9 Da, respectively, both with an RSD of 0.03%. The molecular weight distribution of ethylene oxide (EO), the polydispersity index (PDI), was 1.0003 for all preparations with a minimum and maximum number of EO units of 448 ± 2 and 516 ± 2, respectively. The method was finally applied to commercially available Neulasta® lots where the Mn and Mw were 39 995.8 and 40 008.8 Da, respectively, both with an RSD of 0.1%. The minimum and maximum EO units across the lots were observed to be 444.5 ± 1.5 and 514 ± 3, respectively. The PDI for all Neulasta® lots was 1.0003. This study provides an insightful characterization of Neulasta® and describes a robust LC-MS methodology for the characterization of the PEGylated proteins.


Subject(s)
Dimethyl Sulfoxide , Molecular Weight , Polyethylene Glycols , Dimethyl Sulfoxide/chemistry , Polyethylene Glycols/chemistry , Mass Spectrometry/methods , Chromatography, Reverse-Phase/methods , Proteins/analysis , Proteins/chemistry , Reproducibility of Results , Gases/chemistry , Gases/analysis
15.
Cryobiology ; 115: 104879, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447705

ABSTRACT

Solid surface freezing or vitrification (SSF/SSV) can be done by depositing droplets of a sample, e.g., cells in a preservation solution, onto a pre-cooled metal surface. It is used to achieve higher cooling rates and concomitant higher cryosurvival rates compared to immersion of samples into liquid nitrogen. In this study, numerical simulations of SSF/SSV were conducted by modeling the cooling dynamics of droplets of cryoprotective agent (CPA) solutions. It was assumed that deposited droplets attain a cylindrical bottom part and half-ellipsoidal shaped upper part. Material properties for heat transfer simulations including density, heat capacity and thermal conductivity were obtained from the literature and extrapolated using polynomial fitting. The impact of CPA type, i.e., glycerol (GLY) and dimethyl sulfoxide (DMSO), CPA concentration, and droplet size on the cooling dynamics was simulated at different CPA mass fractions at temperatures ranging from -196 to 25 °C. Simulations show that glycerol solutions cool faster compared to DMSO solutions, and cooling rates increase with decreasing CPA concentration. However, we note that material property data for GLY and DMSO solutions were obtained in different temperature and concentration ranges under different conditions, which complicated making an accurate comparison. Experimental studies show that samples that freeze have a delayed cooling response early on, whereas equilibration times are similar compared to samples that vitrify. Finally, as proof of concept, droplets of human red blood cells (RBCs) were cryopreserved using SSV/SSF comparing the effect of GLY and DMSO on cryopreservation outcome. At 20% (w/w), similar hemolysis rates were found for GLY and DMSO, whereas at 40%, GLY outperformed DMSO.


Subject(s)
Cryopreservation , Cryoprotective Agents , Dimethyl Sulfoxide , Freezing , Glycerol , Vitrification , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Glycerol/chemistry , Glycerol/pharmacology , Dimethyl Sulfoxide/chemistry , Cryopreservation/methods , Humans , Thermal Conductivity , Erythrocytes , Computer Simulation
16.
J Mech Behav Biomed Mater ; 154: 106503, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522154

ABSTRACT

Low temperatures slow or halt undesired biological and chemical processes, protecting cells, tissues, and organs during storage. Cryopreservation techniques, including controlled media exchange and regulated freezing conditions, aim to mitigate the physical consequences of freezing. Dimethyl sulfoxide (DMSO), for example, is a penetrating cryoprotecting agent (CPA) that minimizes ice crystal growth by replacing intracellular water, while polyvinyl alcohol (PVA) is a nonpenetrating CPA that prevents recrystallization during thawing. Since proteins and ground substance dominate the passive properties of soft biological tissues, we studied how different freezing rates, storage temperatures, storage durations, and the presence of cryoprotecting agents (5% [v/v] DMSO + 1 mg/mL PVA) impact the histomechanical properties of the internal thoracic artery (ITA), a clinically relevant blood vessel with both elastic and muscular characteristics. Remarkably, biaxial mechanical analyses failed to reveal significant differences among the ten groups tested, suggesting that mechanical properties are virtually independent of the cryopreservation technique. Scanning electron microscopy revealed minor CPA-independent delamination in rapidly frozen samples, while cryoprotected ITAs had better post-thaw viability than their unprotected counterparts using methyl thiazole-tetrazolium (MTT) metabolic assays, especially when frozen at a controlled rate. These results can be used to inform ongoing and future studies in vascular engineering, physiology, and mechanics.


Subject(s)
Cryoprotective Agents , Dimethyl Sulfoxide , Dimethyl Sulfoxide/chemistry , Cryoprotective Agents/chemistry , Cryopreservation/methods , Freezing , Arteries
17.
ACS Sens ; 9(3): 1508-1514, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38387077

ABSTRACT

In situ and real-time determination of hydroxyl radicals (•OH) in physiological and pathological processes is a great challenge due to their ultrashort lifetime. Herein, an electrochemical method was developed by using dimethyl sulfoxide (DMSO) as a trapping probe for rapid determination of •OH in aqueous solution. When DMSO reacted with •OH, an intermediate product methane sulfinic acid (MSIA) was formed, which can be electrochemically oxidized to methanesulfonic acid (MSA) on the glassy carbon electrode (GCE), resulting in a distinct voltammetric signal that is directly proportional to the concentration of •OH. Other commonly encountered reactive oxygen species (ROS), including hypochlorite anions (ClO-), superoxide anions (O2•-), sulfate radicals (SO4•-), and singlet oxygen (1O2), have showed no interference for •OH determination. Thus, an electrochemical method was developed for the determination of •OH, which exhibits a wide linear range (0.4-5120 µM) and a low limit detection of 0.13 µM (S/N = 3) and was successfully applied for the quantification of •OH in aqueous extracts of cigarette tar (ACT). Alternatively, the same reaction mechanism is also applicable for the determination of DMSO, in which a linear range of 40-320 µM and a detection limit 13.3 µM (S/N = 3) was achieved. The method was used for the evaluation of DMSO content in cell cryopreservation medium. This work demonstrated that DMSO can serve as an electrochemical probe and has valuable application potential in radical study, biological research, and environmental monitoring.


Subject(s)
Dimethyl Sulfoxide , Hydroxyl Radical , Hydroxyl Radical/chemistry , Dimethyl Sulfoxide/chemistry , Reactive Oxygen Species , Indicators and Reagents , Water
18.
Carbohydr Res ; 537: 109047, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359696

ABSTRACT

Cellulose palmitates (CPs) were synthesized with varying degrees of substitution (DS) via a catalyst-free, homogeneous transesterification of cellulose in a novel superbase ionic liquid (SB-IL) system, specifically 5-methyl-1,5,7-triaza-bicyclo[4.3.0]non-6-enium acetate [mTBNH][OAc], combined with dimethyl sulfoxide (DMSO) as a co-solvent, using vinyl palmitate as the acylating agent. We examined the influence of reaction temperature, reaction time, and the molar ratio of vinyl palmitate to anhydroglucose unit (AGU) on the DS, which ranged from 0.5 to 2.3 under the given conditions. Notably, the reaction order of the three hydroxy groups was C6-OH > C2-OH > C3-OH. To elucidate the chemical structure of CPs and confirm the transesterification process, various spectroscopic techniques including 1H nuclear magnetic resonance (NMR), 13C NMR, heteronuclear single quantum correlation (HSQC), and solid-state NMR were employed. Higher reaction temperatures and extended reaction times led to a decrease in the DS of CPs, potentially due to the degradation of some of the involved chemicals during the transesterification process. We also investigated the stability of the pure ionic liquid (IL) and the IL + DMSO solvent system at elevated temperatures by heating them at 100 °C for 5 h, confirming their chemical integrity through 1H NMR analysis. Additionally, we assessed the compatibility between the solvent system and cellulose by subjecting a mixture of cellulose and the solvent system to 100 °C for 5 h. To compare the structures of untreated cellulose and regenerated cellulose, Fourier transform infrared (FT-IR) spectroscopy was employed. Furthermore, we determined the molar mass of both untreated cellulose and regenerated cellulose, as well as CPs synthesized at higher reaction temperatures and longer durations, using intrinsic viscosity measurements. Lastly, we examined the solubility properties of CPs.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Dimethyl Sulfoxide/chemistry , Esters , Spectroscopy, Fourier Transform Infrared , Cellulose/chemistry , Solvents , Palmitates
19.
STAR Protoc ; 5(1): 102850, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38285735

ABSTRACT

Circular dichroism (CD) spectrometry is a rapid technique for detecting protein secondary structure, particularly helicity. DMSO is used to ensure optimal solubility of peptides/peptidomimetics; however, its background absorbance hinders effective CD analysis. Here, we present a protocol for reconstituting peptides/peptidomimetics from DMSO to aqueous buffers for CD analyses. We describe steps for identifying chemicals that induce DMSO evaporation, extracting peptides/peptidomimetics from DMSO, and CD spectrometer setup and analysis. We then detail procedures for secondary structure analyses of reconstituted peptides/peptidomimetics. For complete details on the use and execution of this protocol, please refer to Gao et al. (2023).1.


Subject(s)
Dimethyl Sulfoxide , Peptidomimetics , Circular Dichroism , Dimethyl Sulfoxide/chemistry , Peptides/chemistry , Proteins , Water
20.
Carbohydr Polym ; 329: 121770, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286545

ABSTRACT

The complete dissolution of starch without degradation are necessary prerequisites for starch fractionation to obtain amylose or amylopectin (AP). With the recent, continuous progress in finding efficient and eco-friendly starch-dissolving solutions, applying new solvents for starch fractionation is important. In this study, the effects of dimethyl sulfoxide (DMSO), NaOH, and CaCl2 solutions on starch structure and AP product parameters during starch fractionation were compared with respect to the starch deconstruction effect. This study proved that the CaCl2 solution could effectively dissolve corn starch (50 °C, solubility of 98.96 %), and promote the regeneration of starch into uniform and fine particles. Furthermore, the three solvents (DMSO, NaOH, and CaCl2) changed the crystal structure of corn starch, but they were all non-derivatizing solvents. The effect of the CaCl2 solution on the molecular structure of corn starch was the least significant of the three solvents. Finally, the extraction rate of AP from the CaCl2 solution reached 69.45 %. In conclusion, this study presents a novel and effective method for AP extraction.


Subject(s)
Amylopectin , Starch , Starch/chemistry , Amylopectin/chemistry , Zea mays/chemistry , Dimethyl Sulfoxide/chemistry , Calcium Chloride , Sodium Hydroxide , Amylose/chemistry , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL