Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.350
Filter
1.
Sci Rep ; 14(1): 15830, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982145

ABSTRACT

Demequina, commonly found in coastal and marine environments, represents a genus of Actinomycetes. In this study, strains Demequina PMTSA13T and OYTSA14 were isolated from the rhizosphere of Capsicum annuum, leading to the discovery of a novel species, Demequina capsici. Bacteria play a significant role in plant growth, yet there have been no reports of the genus Demequina acting as plant growth-promoting bacteria (PGPB). Comparative genomics analysis revealed ANI similarity values of 74.05-80.63% for PMTSA13T and 74.02-80.54% for OYTSA14, in comparison to various Demequina species. The digital DNA-DNA hybridization (dDDH) values for PMTSA13T ranged from 19 to 39%, and 19.1-38.6% for OYTSA14. Genome annotation revealed the presence of genes associated with carbohydrate metabolism and transport, suggesting a potential role in nutrient cycling and availability for plants. These strains were notably rich in genes related to 'carbohydrate metabolism and transport (G)', according to their Cluster of Orthologous Groups (COG) classification. Additionally, both strains were capable of producing auxin (IAA) and exhibited enzymatic activities for cellulose degradation and catalase. Furthermore, PMTSA13T and OYTSA14 significantly induced the growth of Arabidopsis thaliana seedlings primarily attributed to their capacity to produce IAA, which plays a crucial role in stimulating plant growth and development. These findings shed light on the potential roles of Demequina strains in plant-microbe interactions and agricultural applications. The type strain is Demequina capsici PMTSA13T (= KCTC 59028T = GDMCC 1.4451T), meanwhile OYTSA14 is identified as different strains of Demequina capsici.


Subject(s)
Capsicum , Phylogeny , Rhizosphere , Capsicum/microbiology , Capsicum/growth & development , Soil Microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Actinobacteria/classification , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Plant Development
2.
Sci Rep ; 14(1): 15779, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982270

ABSTRACT

Ascomycetes, basidiomycetes and deuteromycetes can degrade wood, but less attention has been paid to basidiomycetes involved in Esca, a major Grapevine Trunk Disease. Using a wood sawdust microcosm system, we compared the wood degradation of three grapevine cultivars inoculated with Fomitiporia mediterranea M. Fisch, a basidiomycete responsible for white-rot development and involved in Esca disease. The grapevine cultivar Ugni blanc was more susceptible to wood degradation caused by F. mediterranea than the cultivars Cabernet Sauvignon and Merlot. Solid-state Nuclear Magnetic Resonance (NMR) spectroscopy showed that F. mediterranea preferentially degrades lignin and hemicellulose over cellulose (preferential, successive or sequential white-rot). In addition, co-inoculation of sawdust with two cellulolytic and xylanolytic bacterial strains of Paenibacillus (Nakamura) Ash (Paenibacillus sp. (S231-2) and P. amylolyticus (S293)), enhanced F. mediterranea ability to degrade Ugni blanc. The NMR data further showed that the increase in Ugni blanc sawdust degradation products was greater when bacteria and fungi were inoculated together. We also demonstrated that these two bacterial strains could degrade the wood components of Ugni blanc sawdust. Genome analysis of these bacterial strains revealed numerous genes predicted to be involved in cellulose, hemicellulose, and lignin degradation, as well as several other genes related to bacteria-fungi interactions and endophytism inside the plant. The occurrence of this type of bacteria-fungus interaction could explain, at least in part, why necrosis develops extensively in certain grapevine varieties such as Ugni blanc.


Subject(s)
Lignin , Paenibacillus , Vitis , Wood , Wood/microbiology , Vitis/microbiology , Lignin/metabolism , Paenibacillus/genetics , Paenibacillus/metabolism , Plant Diseases/microbiology , Basidiomycota/genetics , Basidiomycota/metabolism , Polysaccharides/metabolism , Cellulose/metabolism , Genome, Bacterial
3.
BMC Bioinformatics ; 25(1): 233, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982375

ABSTRACT

BACKGROUND: Structural variations play an important role in bacterial genomes. They can mediate genome adaptation quickly in response to the external environment and thus can also play a role in antibiotic resistance. The detection of structural variations in bacteria is challenging, and the recognition of even small rearrangements can be important. Even though most detection tools are aimed at and benchmarked on eukaryotic genomes, they can also be used on prokaryotic genomes. The key features of detection are the ability to detect small rearrangements and support haploid genomes. Because of the limiting performance of a single detection tool, combining the detection abilities of multiple tools can lead to more robust results. There are already available workflows for structural variation detection for long-reads technologies and for the detection of single-nucleotide variation and indels, both aimed at bacteria. Yet we are unaware of structural variations detection workflows for the short-reads sequencing platform. Motivated by this gap we created our workflow. Further, we were interested in increasing the detection performance and providing more robust results. RESULTS: We developed an open-source bioinformatics pipeline, ProcaryaSV, for the detection of structural variations in bacterial isolates from paired-end short sequencing reads. Multiple tools, starting with quality control and trimming of sequencing data, alignment to the reference genome, and multiple structural variation detection tools, are integrated. All the partial results are then processed and merged with an in-house merging algorithm. Compared with a single detection approach, ProcaryaSV has improved detection performance and is a reproducible easy-to-use tool. CONCLUSIONS: The ProcaryaSV pipeline provides an integrative approach to structural variation detection from paired-end next-generation sequencing of bacterial samples. It can be easily installed and used on Linux machines. It is publicly available on GitHub at https://github.com/robinjugas/ProcaryaSV .


Subject(s)
Genome, Bacterial , High-Throughput Nucleotide Sequencing , Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Bacteria/genetics
4.
BMC Genomics ; 25(1): 691, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004696

ABSTRACT

BACKGROUND: Muskoxen are important ecosystem components and provide food, economic opportunities, and cultural well-being for Indigenous communities in the Canadian Arctic. Between 2010 and 2021, Erysipelothrix rhusiopathiae was isolated from carcasses of muskoxen, caribou, a seal, and an Arctic fox during multiple large scale mortality events in the Canadian Arctic Archipelago. A single strain ('Arctic clone') of E. rhusiopathiae was associated with the mortalities on Banks, Victoria and Prince Patrick Islands, Northwest Territories and Nunavut, Canada (2010-2017). The objectives of this study were to (i) characterize the genomes of E. rhusiopathiae isolates obtained from more recent muskox mortalities in the Canadian Arctic in 2019 and 2021; (ii) identify and compare common virulence traits associated with the core genome and mobile genetic elements (i.e. pathogenicity islands and prophages) among Arctic clone versus other E. rhusiopathiae genomes; and iii) use pan-genome wide association studies (GWAS) to determine unique genetic contents of the Arctic clone that may encode virulence traits and that could be used for diagnostic purposes. RESULTS: Phylogenetic analyses revealed that the newly sequenced E. rhusiopathiae isolates from Ellesmere Island, Nunavut (2021) also belong to the Arctic clone. Of 17 virulence genes analysed among 28 Arctic clone isolates, four genes - adhesin, rhusiopathiae surface protein-A (rspA), choline binding protein-B (cbpB) and CDP-glycerol glycerophosphotransferase (tagF) - had amino acid sequence variants unique to this clone when compared to 31 other E. rhusiopathiae genomes. These genes encode proteins that facilitate E. rhusiopathiae to attach to the host endothelial cells and form biofilms. GWAS analyses using Scoary found several unique genes to be overrepresented in the Arctic clone. CONCLUSIONS: The Arctic clone of E. rhusiopathiae was associated with multiple muskox mortalities spanning over a decade and multiple Arctic islands with distances over 1000 km, highlighting the extent of its spatiotemporal spread. This clone possesses unique gene content, as well as amino acid variants in multiple virulence genes that are distinct from the other closely related E. rhusiopathiae isolates. This study establishes an essential foundation on which to investigate whether these differences are correlated with the apparent virulence of this specific clone through in vitro and in vivo studies.


Subject(s)
Erysipelothrix , Arctic Regions , Erysipelothrix/genetics , Erysipelothrix/pathogenicity , Erysipelothrix/isolation & purification , Canada , Animals , Virulence/genetics , Genomics , Genome, Bacterial , Phylogeny , Erysipelothrix Infections/microbiology , Virulence Factors/genetics , Genome-Wide Association Study , Genomic Islands
5.
PLoS Biol ; 22(7): e3002638, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990824

ABSTRACT

Consortia of multicellular magnetotactic bacteria (MMB) are currently the only known example of bacteria without a unicellular stage in their life cycle. Because of their recalcitrance to cultivation, most previous studies of MMB have been limited to microscopic observations. To study the biology of these unique organisms in more detail, we use multiple culture-independent approaches to analyze the genomics and physiology of MMB consortia at single-cell resolution. We separately sequenced the metagenomes of 22 individual MMB consortia, representing 8 new species, and quantified the genetic diversity within each MMB consortium. This revealed that, counter to conventional views, cells within MMB consortia are not clonal. Single consortia metagenomes were then used to reconstruct the species-specific metabolic potential and infer the physiological capabilities of MMB. To validate genomic predictions, we performed stable isotope probing (SIP) experiments and interrogated MMB consortia using fluorescence in situ hybridization (FISH) combined with nanoscale secondary ion mass spectrometry (NanoSIMS). By coupling FISH with bioorthogonal noncanonical amino acid tagging (BONCAT), we explored their in situ activity as well as variation of protein synthesis within cells. We demonstrate that MMB consortia are mixotrophic sulfate reducers and that they exhibit metabolic differentiation between individual cells, suggesting that MMB consortia are more complex than previously thought. These findings expand our understanding of MMB diversity, ecology, genomics, and physiology, as well as offer insights into the mechanisms underpinning the multicellular nature of their unique lifestyle.


Subject(s)
In Situ Hybridization, Fluorescence , Metagenome , Microbial Consortia/genetics , Genome, Bacterial , Bacteria/genetics , Bacteria/metabolism , Genetic Variation , Phylogeny
6.
Proc Natl Acad Sci U S A ; 121(29): e2309757121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990940

ABSTRACT

Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.


Subject(s)
Genome, Bacterial , Phenotype , Color , Bacteria/genetics , Bacteria/metabolism , Proteobacteria/genetics , Proteobacteria/metabolism , Phylogeny , Metagenome , Genome-Wide Association Study , Bacteroidetes/genetics , Bacteroidetes/metabolism
7.
Genome Biol Evol ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39007295

ABSTRACT

This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.


Subject(s)
Genome, Bacterial , Hydrothermal Vents , Phylogeny , Vibrio , Vibrio/genetics , Hydrothermal Vents/microbiology , Evolution, Molecular , Adaptation, Physiological/genetics , Pacific Ocean
8.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38949867

ABSTRACT

Lactobacillus species are common inhabitants of the 'healthy' female urinary and vaginal communities, often associated with a lack of symptoms in both anatomical sites. Given identification by prior studies of similar bacterial species in both communities, it has been hypothesized that the two microbiotas are in fact connected. Here, we carried out whole-genome sequencing of 49 Lactobacillus strains, including 16 paired urogenital samples from the same participant. These strains represent five different Lactobacillus species: L. crispatus, L. gasseri, L. iners, L. jensenii, and L. paragasseri. Average nucleotide identity (ANI), alignment, single-nucleotide polymorphism (SNP), and CRISPR comparisons between strains from the same participant were performed. We conducted simulations of genome assemblies and ANI comparisons and present a statistical method to distinguish between unrelated, related, and identical strains. We found that 50 % of the paired samples have identical strains, evidence that the urinary and vaginal communities are connected. Additionally, we found evidence of strains sharing a common ancestor. These results establish that microbial sharing between the urinary tract and vagina is not limited to uropathogens. Knowledge that these two anatomical sites can share lactobacilli in females can inform future clinical approaches.


Subject(s)
Lactobacillus , Microbiota , Polymorphism, Single Nucleotide , Vagina , Humans , Female , Vagina/microbiology , Lactobacillus/genetics , Lactobacillus/classification , Genome, Bacterial , Phylogeny , Urinary Tract/microbiology , Whole Genome Sequencing , Urine/microbiology
9.
Arch Microbiol ; 206(7): 332, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951206

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped and motile strain HL-JVS1T, was isolated from the gastric tract of a juvenile Pacific white shrimp. Molecular phylogenetic analysis based on 16S rRNA gene sequences of strain HL-JVS1T revealed its affiliation with the genus Pleionea, with close relatives including Pleionea mediterranea MOLA115T (97.5%) and Pleionea sediminis S1-5-21T (96.2%). The complete genome of strain HL-JVS1T consisted of a circular 4.4 Mb chromosome and two circular plasmids (6.6 and 35.0 kb) with a G + C content of 43.1%. The average nucleotide identity and digital DNA-DNA hybridization values between strain HL-JVS1T and the type strains of described Pleionea species were 69.7-70.4% and 18.3-18.6%, respectively. Strain HL-JVS1T grew at 10-40 °C (optimum, 30 °C) in the presence of 0.5 - 9.0% (w/v) sea salts (optimum, 2.0 - 2.5%), and at pH range of 5.5 - 10.0 (optimum, pH 6.5). The major fatty acids (> 10%) were summed feature 9 (iso-C17:1 ω9c and/or C16:0 10-methyl) (23.3%), iso-C16:0 (14.5%), iso-C11:0 3-OH (13.8%) and iso-C15:0 (11.0%). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, two unidentified aminolipids, and two unidentified lipids. The respiratory quinone was ubiquinone-8. The comprehensive phylogenetic, phylogenomic, phenotypic and chemotaxonomic results showed that strain HL-JVS1T is distinct from other Pleionea species. Hence, we propose strain HL-JVS1T as a novel species belonging to the genus Pleionea, for which the name Pleionea litopenaei sp. nov. is proposed with HL-JVS1T (= KCCM 90514T = JCM 36490T) as the type strain.


Subject(s)
Base Composition , DNA, Bacterial , Fatty Acids , Penaeidae , Phylogeny , RNA, Ribosomal, 16S , Animals , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Fatty Acids/metabolism , DNA, Bacterial/genetics , Bacterial Typing Techniques , Nucleic Acid Hybridization , Sequence Analysis, DNA , Genome, Bacterial , Planococcaceae/genetics , Planococcaceae/isolation & purification , Planococcaceae/classification , Gastrointestinal Tract , Phospholipids/analysis
10.
Curr Microbiol ; 81(8): 247, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951210

ABSTRACT

Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.


Subject(s)
Genome, Bacterial , Stenotrophomonas , Zea mays , Zea mays/microbiology , Stenotrophomonas/genetics , Stenotrophomonas/metabolism , Biotechnology , Base Composition , Plant Roots/microbiology , Soil Microbiology , Agriculture , Phylogeny , Multigene Family
11.
Methods Mol Biol ; 2833: 121-128, 2024.
Article in English | MEDLINE | ID: mdl-38949706

ABSTRACT

Going back in time through a phylogenetic tree makes it possible to evaluate ancestral genomes and assess their potential to acquire key polymorphisms of interest over evolutionary time. Knowledge of this kind may allow for the emergence of key traits to be predicted and pre-empted from currently circulating strains in the future. Here, we present a novel genome-wide survival analysis and use the emergence of drug resistance in Mycobacterium tuberculosis as an example to demonstrate the potential and utility of the technique.


Subject(s)
Mycobacterium tuberculosis , Phylogeny , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Genome, Bacterial , Humans , Evolution, Molecular , Drug Resistance, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/genetics
12.
Methods Mol Biol ; 2833: 161-183, 2024.
Article in English | MEDLINE | ID: mdl-38949710

ABSTRACT

Outbreaks are a risk to public health particularly when pathogenic, hypervirulent, and/or multidrug-resistant organisms (MDROs) are involved. In a hospital setting, vulnerable populations such as the immunosuppressed, intensive care patients, and neonates are most at risk. Rapid and accurate outbreak detection is essential to implement effective interventions in clinical areas to control and stop further transmission. Advances in the field of whole genome sequencing (WGS) have resulted in lowered costs, increased capacity, and improved reproducibility of results. WGS now has the potential to revolutionize the investigation and management of outbreaks replacing conventional genotyping and other discrimination systems. Here, we outline specific procedures and protocols to implement WGS into investigation of outbreaks in healthcare settings.


Subject(s)
Disease Outbreaks , Genomics , Whole Genome Sequencing , Humans , Whole Genome Sequencing/methods , Genomics/methods , Genome, Bacterial
13.
Methods Mol Biol ; 2833: 195-210, 2024.
Article in English | MEDLINE | ID: mdl-38949712

ABSTRACT

Whole genome sequencing of Mycobacterium tuberculosis complex (MTBC) isolates has been shown to provide accurate predictions for resistance and susceptibility for many first- and second-line anti-tuberculosis drugs. However, bioinformatic pipelines and mutation catalogs to predict antimicrobial resistances in MTBC isolates are often customized and detailed protocols are difficult to access. Here, we provide a step-by-step workflow for the processing and interpretation of short-read sequencing data and give an overview of available analysis pipelines.


Subject(s)
Antitubercular Agents , Computational Biology , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Whole Genome Sequencing/methods , Microbial Sensitivity Tests/methods , Humans , Antitubercular Agents/pharmacology , Computational Biology/methods , Genome, Bacterial , Drug Resistance, Bacterial/genetics , Mutation , Tuberculosis/microbiology , Tuberculosis/drug therapy
14.
Methods Mol Biol ; 2833: 185-193, 2024.
Article in English | MEDLINE | ID: mdl-38949711

ABSTRACT

Whole genome sequencing (WGS) is becoming an important diagnostic tool for antimicrobial susceptibility testing of Mycobacterium tuberculosis complex (MTBC) isolates in many countries. WGS protocols usually start with the preparation of a DNA-library: the critical first step in the process. A DNA-library represents the genomic content of a DNA sample and consists of unique short DNA fragments. Although available DNA-library protocols come with manufacturer instructions, details of the entire process, including quality controls, instrument parameters, and run evaluations, often need to be developed and customized by each laboratory to implement WGS technology effectively. Here, we provide a detailed workflow for a DNA-library preparation based on an adapted Illumina protocol optimized for the reduction of reagent costs.


Subject(s)
Genome, Bacterial , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Whole Genome Sequencing/methods , Microbial Sensitivity Tests/methods , Humans , Antitubercular Agents/pharmacology , Gene Library , DNA, Bacterial/genetics , Tuberculosis/microbiology , Tuberculosis/diagnosis , High-Throughput Nucleotide Sequencing/methods
15.
Methods Mol Biol ; 2833: 211-223, 2024.
Article in English | MEDLINE | ID: mdl-38949713

ABSTRACT

Genomic sequencing has revolutionized microbial typing methods and transformed high-throughput methods in reference, clinical, and research laboratories. The detection of antimicrobial-resistant (AMR) determinants using genomic methods can provide valuable information on the emergence of resistance. Here we describe an approach to detecting AMR determinants using an open access and freely available platform which does not require bioinformatic expertise.


Subject(s)
Computational Biology , Drug Resistance, Bacterial , Genome, Bacterial , Whole Genome Sequencing , Whole Genome Sequencing/methods , Drug Resistance, Bacterial/genetics , Computational Biology/methods , Humans , Anti-Bacterial Agents/pharmacology , Genomics/methods , Software , Bacteria/genetics , Bacteria/drug effects , High-Throughput Nucleotide Sequencing/methods
16.
Article in English | MEDLINE | ID: mdl-38963413

ABSTRACT

A Gram-stain-negative, yellow-pigmented, and facultatively aerobic bacterium, designated strain GPA1T, was isolated from plastic waste landfill soil in the Republic of Korea. The cells were non-motile short rods exhibiting oxidase-negative and catalase-positive activities. Growth was observed at 15-40 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-2.5 % (w/v) NaCl (optimum, 0 %). Menaquinone-7 was the sole respiratory quinone, and iso-C15 : 0, C16 : 1 ω5c, and iso-C17 : 0 3-OH were the major cellular fatty acids (>10 % of the total fatty acids). Phosphatidylethanolamine was identified as a major polar lipid. Phylogenetic analyses based on 16S rRNA gene sequences and 120 concatenated marker protein sequences revealed that strain GPA1T formed a distinct lineage within the genus Chitinophaga. The genome of strain GPA1T was 6078 kb in size with 53.8 mol% G+C content. Strain GPA1T exhibited the highest similarity to Chitinophaga rhizosphaerae T16R-86T, with a 98.6 % 16S rRNA gene sequence similarity, but their average nucleotide identity and digital DNA-DNA hybridization values were 82.5 and 25.9 %, respectively. Based on its phenotypic, chemotaxonomic, and phylogenetic characteristics, strain GPA1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga pollutisoli sp. nov. is proposed. The type strain is GPA1T (=KACC 23415T=JCM 36644T).


Subject(s)
Bacterial Typing Techniques , Bacteroidetes , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phosphatidylethanolamines , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Republic of Korea , Fatty Acids/chemistry , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry , Vitamin K 2/analysis , DNA, Bacterial/genetics , Geologic Sediments/microbiology , Bacteroidetes/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Nucleic Acid Hybridization , Waste Disposal Facilities , Genome, Bacterial
17.
Article in English | MEDLINE | ID: mdl-38958649

ABSTRACT

A novel slightly halophilic, aerobic, and Gram-stain-negative strain, designated as CH-27T, was isolated during a bacterial resource investigation of intertidal sediment collected from Xiaoshi Island in Weihai, PR China. Cells of strain CH-27T were rod-shaped with widths of 0.3-0.6 µm and lengths of 2.0-11.0 µm. Strain CH-27T grew optimally at 37 °C, pH 7.0 and with 2.0 % (w/v) NaCl. Catalase activity was weakly positive and oxidase activity was positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CH-27T was most related to Marinihelvus fidelis KCTC 92639T (93.6 %), followed by Wenzhouxiangella marina MCCC 1K00261T (92.0 %). Based on genome comparisons between strain CH-27T and M. fidelis KCTC 92639T, the average amino acid identity was 63.6 % and the percentage of conserved proteins was 48.3 %. The major cellular fatty acid of strain CH-27T (≥10 %) was iso-C15 : 0 and the sole respiratory quinone was quinone-8. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The DNA G+C content was 62.7 mol%. Based on comprehensive analysis of its phylogenetic, physiological, biochemical, and chemotaxonomic characteristics, strain CH-27T represents a novel species in a novel genus, for which the name Elongatibacter sediminis gen. nov., sp.nov. is proposed. The type strain is CH-27T (=MCCC 1H00480T=KCTC 8011T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Fatty Acids/chemistry , Geologic Sediments/microbiology , China , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Genome, Bacterial , Phospholipids/chemistry
18.
Sci Rep ; 14(1): 15216, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956138

ABSTRACT

Here, we present the whole genome sequence of Bt S2160-1, a potential alternative to the mosquitocidal model strain, Bti. One chromosome genome and four mega-plasmids were contained in Bt S2160-1, and 13 predicted genes encoding predicted insecticidal crystal proteins were identified clustered on one plasmid pS2160-1p2 containing two pathogenic islands (PAIs) designed as PAI-1 (Cry54Ba, Cry30Ea4, Cry69Aa-like, Cry50Ba2-like, Cry4Ca1-like, Cry30Ga2, Cry71Aa-like, Cry72Aa-like, Cry70Aa-like, Cyt1Da2-like and Vpb4C1-like) and PAI-2 (Cyt1Aa-like, and Tpp80Aa1-like). The clusters appear to represent mosquitocidal toxin islands similar to pathogenicity islands. Transcription/translation of 10 of the 13 predicted genes was confirmed by whole-proteome analysis using LTQ-Orbitrap LC-MS/MS. In summary, the present study identified the existence of a mosquitocidal toxin island in Bacillus thuringiensis, and provides important genomic information for understanding the insecticidal mechanism of B. thuringiensis.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Insecticides , Proteomics , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Proteomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insecticides/pharmacology , Whole Genome Sequencing/methods , Genome, Bacterial , Endotoxins/genetics , Bacillus thuringiensis Toxins , Genomic Islands , Proteome , Plasmids/genetics , Tandem Mass Spectrometry , Animals , Hemolysin Proteins/genetics
19.
BMC Biol ; 22(1): 145, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956546

ABSTRACT

BACKGROUND: Microbes in the cold polar and alpine environments play a critical role in feedbacks that amplify the effects of climate change. Defining the cold adapted ecotype is one of the prerequisites for understanding the response of polar and alpine microbes to climate change. RESULTS: Here, we analysed 85 high-quality, de-duplicated genomes of Deinococcus, which can survive in a variety of harsh environments. By leveraging genomic and phenotypic traits with reverse ecology, we defined a cold adapted clade from eight Deinococcus strains isolated from Arctic, Antarctic and high alpine environments. Genome-wide optimization in amino acid composition and regulation and signalling enable the cold adapted clade to produce CO2 from organic matter and boost the bioavailability of mineral nitrogen. CONCLUSIONS: Based primarily on in silico genomic analysis, we defined a potential cold adapted clade in Deinococcus and provided an updated view of the genomic traits and metabolic potential of Deinococcus. Our study would facilitate the understanding of microbial processes in the cold polar and alpine environments.


Subject(s)
Cold Temperature , Deinococcus , Genome, Bacterial , Genomics , Deinococcus/genetics , Adaptation, Physiological/genetics , Phylogeny
20.
Database (Oxford) ; 20242024 Jul 02.
Article in English | MEDLINE | ID: mdl-38958433

ABSTRACT

Myxobacteria are predatory bacteria with antimicrobial activity, utilizing complex mechanisms to kill their prey and assimilate their macromolecules. Having large genomes encoding hundreds of secondary metabolites, hydrolytic enzymes and antimicrobial peptides, these organisms are widely studied for their antibiotic potential. MyxoPortal is a comprehensive genomic database hosting 262 genomes of myxobacterial strains. Datasets included provide genome annotations with gene locations, functions, amino acids and nucleotide sequences, allowing analysis of evolutionary and taxonomical relationships between strains and genes. Biosynthetic gene clusters are identified by AntiSMASH, and dbAMP-generated antimicrobial peptide sequences are included as a resource for novel antimicrobial discoveries, while curated datasets of CRISPR/Cas genes, regulatory protein sequences, and phage associated genes give useful insights into each strain's biological properties. MyxoPortal is an intuitive open-source database that brings together application-oriented genomic features that can be used in taxonomy, evolution, predation and antimicrobial research. MyxoPortal can be accessed at http://dicsoft1.physics.iisc.ac.in/MyxoPortal/. Database URL:  http://dicsoft1.physics.iisc.ac.in/MyxoPortal/. Graphical Abstract.


Subject(s)
Databases, Genetic , Genome, Bacterial , Myxococcales , Myxococcales/genetics , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL