Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.551
Filter
1.
J Orthop Surg Res ; 19(1): 386, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951811

ABSTRACT

BACKGROUND: Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS: We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS: Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION: Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Signal Transduction , Toxoplasma , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Humans , Animals , Signal Transduction/physiology , Cell Differentiation/physiology , Male , Toxoplasma/physiology , Rats , Smad Proteins/metabolism , Protozoan Proteins/metabolism , Bone Morphogenetic Proteins/metabolism , Cells, Cultured
2.
FASEB J ; 38(13): e23776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958998

ABSTRACT

This study aimed to explore how mechanical stress affects osteogenic differentiation via the miR-187-3p/CNR2 pathway. To conduct this study, 24 female C57BL/6 mice, aged 8 weeks, were used and divided into four groups. The Sham and OVX groups did not undergo treadmill exercise, while the Sham + EX and OVX + EX groups received a 8-week treadmill exercise. Post-training, bone marrow and fresh femur samples were collected for further analysis. Molecular biology analysis, histomorphology analysis, and micro-CT analysis were conducted on these samples. Moreover, primary osteoblasts were cultured under osteogenic conditions and divided into GM group and CTS group. The cells in the CTS group underwent a sinusoidal stretching regimen for either 3 or 7 days. The expression of early osteoblast markers (Runx2, OPN, and ALP) was measured to assess differentiation. The study findings revealed that mechanical stress has a regulatory impact on osteoblast differentiation. The expression of miR-187-3p was observed to decrease, facilitating osteogenic differentiation, while the expression of CNR2 increased significantly. These observations suggest that mechanical stress, miR-187-3p, and CNR2 play crucial roles in regulating osteogenic differentiation. Both in vivo and in vitro experiments have confirmed that mechanical stress downregulates miR-187-3p and upregulates CNR2, which leads to the restoration of distal femoral bone mass and enhancement of osteoblast differentiation. Therefore, mechanical stress promotes osteoblasts, resulting in improved osteoporosis through the miR-187-3p/CNR2 signaling pathway. These findings have broad prospect and provide molecular biology guidance for the basic research and clinical application of exercise in the prevention and treatment of PMOP.


Subject(s)
Cell Differentiation , Mice, Inbred C57BL , MicroRNAs , Osteoblasts , Osteogenesis , Osteoporosis, Postmenopausal , Stress, Mechanical , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Female , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/therapy , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/pathology , Mice , Osteogenesis/physiology , Humans , Signal Transduction , Cells, Cultured
3.
FASEB J ; 38(13): e23779, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38967255

ABSTRACT

Epigenetic modifications affect cell differentiation via transcriptional regulation. G9a/EHMT2 is an important epigenetic modifier that catalyzes the methylation of histone 3 lysine 9 (H3K9) and interacts with various nuclear proteins. In this study, we investigated the role of G9a in osteoclast differentiation. When we deleted G9a by infection of Cre-expressing adenovirus into bone marrow macrophages (BMMs) from G9afl/fl (Ehmt2fl/fl) and induced osteoclastic differentiation by the addition of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), the number of TRAP-positive multinucleated osteoclasts significantly increased compared with control. Furthermore, the mRNA expression of osteoclast markers, TRAP, and cathepsin K, and to a lesser extent, NFATc1, a critical transcription factor, increased in G9a KO cells. Infection of wild-type (WT) G9a-expressing adenovirus in G9a KO cells restored the number of TRAP-positive multinucleated cells. In G9a KO cells, increased nuclear accumulation of NFATc1 protein and decreased H3K9me2 accumulation were observed. Furthermore, ChIP experiments revealed that NFATc1 binding to its target, Ctsk promoter, was enhanced by G9a deletion. For in vivo experiments, we created G9a conditional knock-out (cKO) mice by crossing G9afl/fl mice with Rank Cre/+ (Tnfrsf11aCre/+) mice, in which G9a is deleted in osteoclast lineage cells. The trabecular bone volume was significantly reduced in female G9a cKO mice. The serum concentration of the C-terminal telopeptide of type I collagen (CTX), a bone-resorbing indicator, was higher in G9a cKO mice. In addition, osteoclasts differentiated from G9a cKO BMMs exhibited greater bone-resorbing activity. Our findings suggest that G9a plays a repressive role in osteoclastogenesis by modulating NFATc1 function.


Subject(s)
Bone Resorption , Cell Differentiation , Histone-Lysine N-Methyltransferase , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Animals , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mice , Osteoclasts/metabolism , Bone Resorption/metabolism , Osteogenesis/physiology , Mice, Knockout , RANK Ligand/metabolism , Mice, Inbred C57BL , Cells, Cultured
4.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967690

ABSTRACT

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Subject(s)
Dental Implants , Osseointegration , Osteoblasts , Surface Properties , Osteoblasts/physiology , Osteoblasts/cytology , Humans , Cell Differentiation , Cell Proliferation , Titanium/chemistry , Osteogenesis/physiology
5.
Bone Res ; 12(1): 38, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38961077

ABSTRACT

Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.


Subject(s)
Adipocytes , Aging , Cellular Senescence , Animals , Adipocytes/metabolism , Cellular Senescence/physiology , Mice , Aging/physiology , Mice, Inbred C57BL , Bone Marrow Cells/metabolism , Bone and Bones/metabolism , Bone and Bones/physiology , Male , Osteogenesis/physiology , Signal Transduction , Macrophages/metabolism
6.
Stem Cell Res Ther ; 15(1): 198, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971766

ABSTRACT

BACKGROUND: Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS: 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS: Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS: Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.


Subject(s)
Cell Differentiation , Cilia , Cranial Sutures , Hedgehog Proteins , Osteogenesis , Signal Transduction , Zinc Finger Protein GLI1 , Animals , Mice , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Osteogenesis/physiology , Cilia/metabolism , Cranial Sutures/metabolism , Mice, Inbred C57BL , Osteogenesis, Distraction/methods , Cell Proliferation
7.
Theranostics ; 14(9): 3583-3602, 2024.
Article in English | MEDLINE | ID: mdl-38948067

ABSTRACT

Rationale: Mesenchymal stromal cells (MSCs) are considered a promising resource for cell therapy, exhibiting efficacy in ameliorating diverse bone diseases. However, most MSCs undergo apoptosis shortly after transplantation and produce apoptotic extracellular vesicles (ApoEVs). This study aims to clarify the potential role of ApoEVs from apoptotic MSCs in ameliorating osteoporosis and molecular mechanism. Methods: In this study, Dio-labeled bone marrow mesenchymal stem cells (BMSCs) were injected into mice to track BMSCs apoptosis and ApoEVs production. ApoEVs were isolated from BMSCs after inducing apoptosis, the morphology, size distribution, marker proteins expression of ApoEVs were characterized. Protein mass spectrometry analysis revealed functional differences in proteins between ApoEVs and BMSCs. BMSCs were adopted to test the cellular response to ApoEVs. Ovariectomy mice were used to further compare the ability of ApoEVs in promoting bone formation. SiRNA and lentivirus were used for gain and loss-of-function assay. Results: The results showed that BMSCs underwent apoptosis within 2 days after being injected into mice and produce a substantial quantity of ApoEVs. Proteomic analysis revealed that ApoEVs carried a diverse functional array of proteins, and easily traversed the circulation to reach the bone. After being phagocytized by endogenous BMSCs, ApoEVs efficiently promoted the proliferation, migration, and osteogenic differentiation of BMSCs. In an osteoporosis mouse model, treatment of ApoEVs alleviated bone loss and promoted bone formation. Mechanistically, ApoEVs carried Ras protein and activated the Ras/Raf1/Mek/Erk pathway to promote osteogenesis and bone formation in vitro and in vivo. Conclusion: Given that BMSC-derived ApoEVs are high-yield and easily obtained, our data underscore the substantive role of ApoEVs from dying BMSCs to treat bone loss, presenting broad implications for cell-free therapeutic modalities.


Subject(s)
Apoptosis , Extracellular Vesicles , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Mesenchymal Stem Cells/metabolism , Osteoporosis/therapy , Osteoporosis/metabolism , Mice , Female , Osteogenesis/physiology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Cell Proliferation , Mice, Inbred C57BL , Disease Models, Animal , Ovariectomy , Proteomics , Signal Transduction
8.
Bone Joint J ; 106-B(7): 751-758, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38945540

ABSTRACT

Aims: Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children. Methods: In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs. Results: We categorized the new bone formation into three stages: stage I (early lengthening), in which there was no obvious callus formation on radiographs and ultrasound; stage II (lengthening), in which radiographs showed low-density callus formation with uneven distribution and three sub-stages could be identified on ultrasound: in Ia punctate callus was visible; in IIb there was linear callus formation which was not yet connected and in IIc there was continuous linear callus. In stage III (healing), the bone ends had united, the periosteum was intact, and the callus had disappeared, as confirmed on radiographs, indicating healed bone. A progressive increase in the number of vertical vessels was noted in the early stages, peaking during stages IIb and IIc, followed by a gradual decline (p < 0.001). Delayed healing involved patients with a prolonged stage IIa or those who regressed to stage IIa from stages IIb or IIc during lengthening. Conclusion: We found that the formation of new bone in paediatric patients undergoing limb lengthening could be reliably evaluated using ultrasound when combined with the radiological findings. This combination enabled an improved assessment of the prognosis, and adjustments to the lengthening protocol. While SMI offered additional insights into angiogenesis within the new bone, its role primarily contributed to the understanding of the microvascular environment rather than directly informing adjustments of treatment.


Subject(s)
Ultrasonography , Humans , Child , Retrospective Studies , Male , Female , Child, Preschool , Adolescent , Ultrasonography/methods , Osteogenesis/physiology , Bone Lengthening/methods , Bony Callus/diagnostic imaging , Bony Callus/blood supply , Leg Length Inequality/diagnostic imaging , Leg Length Inequality/etiology , Microvessels/diagnostic imaging , Radiography
9.
Arch Oral Biol ; 165: 106027, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38870610

ABSTRACT

OBJECTIVE: This study examined how range concentrations of Fibroblast Growth Factor-2 (FGF-2) influence the differentiation and activity of human-derived periodontal ligament (hPDLSCs) and alveolar bone-derived stem cells (haBMSCs). DESIGN: hPDLSCs and haBMSCs were cultured with varying concentrations of FGF-2 (0, 1, 2.5, 5, 10, 20 ng/mL) and monitored for osteogenic differentiation through alkaline phosphatase (ALP) activity and quantification of gene expression (qRT-PCR) for osteogenesis markers. Additionally, alizarin red staining and a hydroxyproline colorimetric assay evaluated and quantified osteogenic matrix mineralization and collagen deposition. Statistical analyses were performed using one-way ANOVA or two-way ANOVA for multiple comparisons between groups. RESULTS: At low FGF-2 concentrations, hPDLSCs differentiated toward an osteogenic lineage, whereas higher concentrations of FGF-2 inhibited osteogenesis and promoted fibroblastic differentiation. The effect of FGF-2 at the lowest concentration tested (1 ng/mL) led to significantly higher ALP activity than osteogenically induced positive controls at early time points and equivalent RUNX2 expression at early and later time points. FGF-2 supplementation of haBMSC cultures was sufficient, at all concentrations, to increase ALP activity at an earlier time point. Mineralization of haBMSC cultures increased significantly within 5-20 ng/mL FGF-2 concentrations under basal growth media conditions (α-minimal essential medium supplemented with 15 % fetal bovine serum and 1 % penicillin/streptomycin). CONCLUSIONS: FGF-2 has a dual capacity in promoting osteogenic and fibroblastic differentiation within hPDLSCs contingent upon the dosage and timing of administration, alongside supporting osteogenic differentiation in haBMSCs. These findings underscore the need for precision growth factors dosing when considering the design of biomaterials for periodontal regeneration.


Subject(s)
Alkaline Phosphatase , Cell Differentiation , Fibroblast Growth Factor 2 , Osteogenesis , Periodontal Ligament , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Cell Differentiation/drug effects , Fibroblast Growth Factor 2/pharmacology , Humans , Osteogenesis/drug effects , Osteogenesis/physiology , Cells, Cultured , Alkaline Phosphatase/metabolism , Alveolar Process/cytology , Alveolar Process/drug effects , Stem Cells/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Real-Time Polymerase Chain Reaction
10.
J Orthop Surg Res ; 19(1): 330, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825686

ABSTRACT

OBJECTIVE: The present study aimed to investigate the underlying mechanism of mechanical stimulation in regulating osteogenic differentiation. MATERIALS AND METHODS: Osteoblasts were exposed to compressive force (0-4 g/cm2) for 1-3 days or CGRP for 1 or 3 days. Expression of receptor activity modifying protein 1 (RAMP1), the transcription factor RUNX2, osteocalcin, p38 and p-p38 were analyzed by western blotting. Calcium mineralization was analyzed by alizarin red straining. RESULTS: Using compressive force treatments, low magnitudes (1 and 2 g/cm2) of compressive force for 24 h promoted osteoblast differentiation and mineral deposition whereas higher magnitudes (3 and 4 g/cm2) did not produce osteogenic effect. Through western blot assay, we observed that the receptor activity-modifying protein 1 (RAMP1) expression was upregulated, and p38 mitogen-activated protein kinase (MAPK) was phosphorylated during low magnitudes compressive force-promoted osteoblast differentiation. Further investigation of a calcitonin gene-related peptide (CGRP) peptide incubation, a ligand for RAMP1, showed that CGRP at concentration of 25 and 50 ng/ml could increase expression levels of RUNX2 and osteocalcin, and percentage of mineralization, suggesting its osteogenic potential. In addition, with the same conditions, CGRP also significantly upregulated RAMP1 and phosphorylated p38 expression levels. Also, the combination of compressive forces (1 and 2 g/cm2) with 50 ng/ml CGRP trended to increase RAMP1 expression, p38 activity, and osteogenic marker RUNX2 levels, as well as percentage of mineralization compared to compressive force alone. This suggest that RAMP1 possibly acts as an upstream regulator of p38 signaling during osteogenic differentiation. CONCLUSION: These findings suggest that CGRP-RAMP1/p38MAPK signaling implicates in osteoblast differentiation in response to optimal magnitude of compressive force. This study helps to define the underlying mechanism of compressive stimulation and may also enhance the application of compressive stimulation or CGRP peptide as an alternative approach for accelerating tooth movement in orthodontic treatment.


Subject(s)
Cell Differentiation , Osteoblasts , Osteogenesis , Receptor Activity-Modifying Protein 1 , p38 Mitogen-Activated Protein Kinases , Osteoblasts/physiology , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/physiology , Receptor Activity-Modifying Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Osteogenesis/physiology , Calcitonin Gene-Related Peptide/metabolism , MAP Kinase Signaling System/physiology , Stress, Mechanical , Animals , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Signal Transduction/physiology , Osteocalcin/metabolism
11.
J Orthop Surg Res ; 19(1): 343, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849896

ABSTRACT

BACKGROUND: Fragility fracture is common in the elderly. Osteoblast differentiation is essential for bone healing and regeneration. Expression pattern of long non-coding RNA MIAT during fracture healing was examined, and its role in osteoblast differentiation was investigated. METHODS: 90 women with simple osteoporosis and 90 women with fragility fractures were included. Another 90 age-matched women were set as the control group. mRNA levels were tested using RT-qPCR. Cell viability was detected via CCK-8, and osteoblastic biomarkers, including ALP, OCN, Collagen I, and RUNX2 were tested via ELISA. The downstream miRNAs and genes targeted by MIAT were predicted by bioinformatics analysis, whose functions and pathways were annotated via GO and KEGG analysis. RESULTS: Serum MIAT was upregulated in osteoporosis women with high accuracy of diagnostic efficacy. Serum MIAT was even elevated in the fragility fracture group, but decreased in a time manner after operation. MIAT knockdown promoted osteogenic proliferation and differentiation of MC3T3-E1, but the influences were reversed by miR-181a-5p inhibitor. A total of 137 overlapping target genes of miR-181a-5p were predicted based on the miRDB, TargetScan and microT datasets, which were mainly enriched for terms related to signaling pathways regulating pluripotency of stem cells, cellular senescence, and osteoclast differentiation. CONCLUSIONS: LncRNA MIAT serves as a promising biomarker for osteoporosis, and promotes osteogenic differentiation via targeting miR-181a-5p.


Subject(s)
Biomarkers , Cell Differentiation , Fracture Healing , Osteoblasts , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Female , Biomarkers/blood , Biomarkers/metabolism , Fracture Healing/genetics , Fracture Healing/physiology , Aged , Cell Differentiation/genetics , Osteoblasts/metabolism , Animals , Mice , MicroRNAs/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteogenesis/genetics , Osteogenesis/physiology , Middle Aged , Osteoporotic Fractures/genetics , Cell Proliferation/genetics , Up-Regulation
12.
J Dent Res ; 103(7): 723-733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38822570

ABSTRACT

A ligature-induced periodontitis model was established in wild-type and CD146CreERT2; RosatdTomato mice to explore the function of pericytes in alveolar bone formation. We found that during periodontitis progression and periodontal wound healing, CD146+/NG2+ pericytes were enriched in the periodontal tissue areas, which could migrate to the alveolar bone surface and colocalize with ALP+/OCN+ osteoblasts. Chemokine C-X-C motif receptor 4 (CXCR4) inhibition using AMD3100 blocked CD146-Cre+ pericyte migration and osteogenesis, as well as further exacerbated periodontitis-associated bone loss. Next, primary pericytes were sorted out by magnetic-activated cell sorting and demonstrated that C-X-C motif chemokine ligand 12 (CXCL12) promotes pericyte migration and osteogenesis via CXCL12-CXCR4-Rac1 signaling. Finally, the local administration of an adeno-associated virus for Rac1 overexpression in NG2+ pericytes promotes osteoblast differentiation of pericytes and increases alveolar bone volume in periodontitis. Thus, our results provided the evidence that pericytes may migrate and osteogenesis via the CXCL12-CXCR4-Rac1 axis during the pathological process of periodontitis.


Subject(s)
Cell Movement , Chemokine CXCL12 , Osteogenesis , Pericytes , Periodontitis , Receptors, CXCR4 , Animals , Osteogenesis/physiology , Cell Movement/physiology , Mice , Chemokine CXCL12/metabolism , Receptors, CXCR4/metabolism , Alveolar Bone Loss , Signal Transduction/physiology , rac1 GTP-Binding Protein/metabolism , Disease Models, Animal , CD146 Antigen , Osteoblasts , Cell Differentiation , Cyclams , Benzylamines
13.
BMC Musculoskelet Disord ; 25(1): 455, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851675

ABSTRACT

BACKGROUND: Masquelet membrane induction technology is one of the treatment strategies for large bone defect (LBD). However, the angiogenesis ability of induced membrane decreases with time and autologous bone grafting is associated with donor site morbidity. This study investigates if the PRP-FG-nHA/PA66 scaffold can be used as a spacer instead of PMMA to improve the angiogenesis ability of induced membrane and reduce the amount of autologous bone graft. METHODS: Platelet rich plasma (PRP) was prepared and PRP-FG-nHA/PA66 scaffold was synthesized and observed. The sustained release of VEGFA and porosity of the scaffold were analyzed. We established a femur LBD model in male SD rats. 55 rats were randomly divided into four groups depending on the spacer filled in the defect area. "Defect only" group (n = 10), "PMMA" group (n = 15), "PRP-nHA/PA66" group (n = 15) and "PRP-FG-nHA/PA66" group (n = 15 ). At 6 weeks, the spacers were removed and the defects were grafted. The induced membrane and bone were collected and stained. The bone formation was detected by micro-CT and the callus union was scored on a three point system. RESULTS: The PRP-FG-nHA/PA66 scaffold was porosity and could maintain a high concentration of VEGFA after 30 days of preparation. The induced membrane in PRP-FG-nHA/PA66 group was thinner than PMMA, but the vessel density was higher.The weight of autogenous bone grafted in PRP-FG-nHA/PA66 group was significantly smaller than that of PMMA group. In PRP-FG-nHA/PA66 group, the bone defect was morphologically repaired. CONCLUSION: The study showed that PRP-FG-nHA/PA66 scaffold can significantly reduce the amount of autologous bone graft, and can achieve similar bone defect repair effect as PMMA. Our findings provide some reference and theoretical support for the treatment of large segmental bone defects in humans.


Subject(s)
Femur , Platelet-Rich Plasma , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Male , Rats , Femur/surgery , Femur/pathology , Vascular Endothelial Growth Factor A , Bone Regeneration/physiology , Neovascularization, Physiologic , Bone Transplantation/methods , Durapatite/chemistry , Disease Models, Animal , Osteogenesis/physiology
14.
Front Endocrinol (Lausanne) ; 15: 1394785, 2024.
Article in English | MEDLINE | ID: mdl-38883597

ABSTRACT

Osteoporosis (OP) is a chronic systemic bone metabolism disease characterized by decreased bone mass, microarchitectural deterioration, and fragility fractures. With the demographic change caused by long lifespans and population aging, OP is a growing health problem. The role of miRNA in the pathogenesis of OP has also attracted widespread attention from scholars in recent years. Type H vessels are unique microvessels of the bone and have become a new focus in the pathogenesis of OP because they play an essential role in osteogenesis-angiogenesis coupling. Previous studies found some miRNAs regulate type H vessel formation through the regulatory factors, including platelet-derived growth factor-BB (PDGF-BB), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and so on. These findings help us gain a more in-depth understanding of the relationship among miRNAs, type H vessels, and OP to find a new perspective on treating OP. In the present mini-review, we will introduce the role of type H vessels in the pathogenesis of OP and the regulation of miRNAs on type H vessel formation by affecting regulatory factors to provide some valuable insights for future studies of OP treatment.


Subject(s)
MicroRNAs , Osteoporosis , Animals , Humans , Bone and Bones/blood supply , Bone and Bones/metabolism , Bone and Bones/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Microvessels/pathology , Microvessels/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Osteogenesis/genetics , Osteogenesis/physiology , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology
15.
Int J Oral Maxillofac Implants ; (3): 350-364, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38905116

ABSTRACT

PURPOSE: The aim of the present study was to compare the histomorphometrically evaluated new bone formation (NB), the radiographically measured graft stability, and the clinical implant outcome for maxillary sinus augmentation grafted with deproteinized bovine bone mineral (DBBM) with either small (Bio-Oss-S, Geistlich) or large (Bio-Oss-L, Geistlich) particles. MATERIALS AND METHODS: Using a split-mouth study design, bilateral maxillary sinus augmentation was performed in 13 patients either with Bio-Oss-S particles (0.25 to 1 mm) or Bio-Oss-L particles (1 to 2 mm). After a healing period of 6 months, bone biopsies were axially retrieved in the molar region for histologic/histomorphometric analysis of NB, including subsequent staged implant placement. To determine graft stability, the maxillary sinus augmentation vertical graft heights were radiographically measured immediately after sinus augmentation, at implant placement, and at the 2- and 4-year post-augmentation follow-ups. In addition, the clinical implant-prosthodontic outcome (survival/ success/marginal bone loss) was assessed at 1 and 3 years post-loading. RESULTS: A total of 22 sinuses from 11 patients with split-mouth evaluation were ultimately available for data and statistical analysis. Histomorphometric analysis of the axially retrieved bone biopsies revealed the presence of NB (S: 25.5% ± 7.0% vs L: 23.6% ± 11.9%; P = .640), residual graft particles (S: 19.6% ± 9.2% vs L: 17.5% ± 6.3%; P = .365) as well as connective tissue (S: 54.9% ± 9.2% vs L: 58.9% ± 12.5%; P = .283), without significant differences between the use of small (Bio-Oss-S) and large (Bio-Oss-L) particles. However, there was significantly (P = .021) higher bone-to-graft contact (BGC) for the small-particle graft sites (27.9% ± 14.8%) compared to the large-particle graft sites (19.9% ± 12.9%), representing a significantly higher osteoconductivity. Both particle sizes showed significant (P < .01) vertical graft height reduction over time (4 years) of about 10%, with predominant graft reduction in the time period between sinus augmentation and implant placement compared to any follow-up periods after implant placement. At the 3-year post-loading implant evaluation, all implants and prostheses survived (100%), and the peri-implant marginal bone loss (S: 0.52 ± 0.19 mm; L: 0.48 ± 0.15 mm) as well as the peri-implant health conditions (S: 87.5%, L:81.2%) did not differ between implants inserted with the two different xenograft particles used. CONCLUSIONS: The use of small and large bovine xenograft particles for maxillary sinus augmentation provides for comparable bone formation, ensuring stable graft dimensions combined with high implant success and healthy peri-implant conditions. However, small particle size resulted in a higher BGC, providing for higher osteoconductivity than with the larger particle size.


Subject(s)
Bone Substitutes , Dental Implantation, Endosseous , Minerals , Particle Size , Sinus Floor Augmentation , Humans , Sinus Floor Augmentation/methods , Middle Aged , Minerals/therapeutic use , Male , Female , Bone Substitutes/therapeutic use , Cattle , Dental Implantation, Endosseous/methods , Animals , Treatment Outcome , Adult , Maxillary Sinus/surgery , Maxillary Sinus/diagnostic imaging , Aged , Osteogenesis/physiology , Biopsy
16.
Sci Rep ; 14(1): 13522, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866900

ABSTRACT

The aim of the present study was to examine the growth dynamics of the two ossification centers of the body of sphenoid bone in the human fetus, based on their linear, planar and volumetric parameters. The examinations were carried out on 37 human fetuses of both sexes aged 18-30 weeks of gestation, which had been preserved in 10% neutral formalin solution. Using CT, digital image analysis software, 3D reconstruction and statistical methods, we evaluated the size of the presphenoid and postsphenoid ossification centers. The presphenoid ossification center grew proportionately in sagittal diameter, projection surface area and volume, and logarithmically in transverse diameter. The postsphenoid ossification center increased logarithmically in sagittal diameter, transverse diameter and projection surface area, while its volumetric growth followed proportionately. The numerical findings of the presphenoid and postsphenoid ossification centers may be considered age-specific reference values of potential relevance in monitoring the normal fetal growth and screening for congenital disorders in the fetus. The obtained results may contribute to a better understanding of the growing fetal skeleton, bringing new numerical information regarding its diagnosis and development.


Subject(s)
Fetus , Osteogenesis , Sphenoid Bone , Humans , Sphenoid Bone/diagnostic imaging , Sphenoid Bone/embryology , Sphenoid Bone/growth & development , Female , Osteogenesis/physiology , Male , Fetus/diagnostic imaging , Tomography, X-Ray Computed , Fetal Development/physiology , Imaging, Three-Dimensional , Gestational Age
17.
Biomater Adv ; 162: 213916, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38838618

ABSTRACT

The Ti6Al4V (TC4) alloy, a prevalent biomedical material in orthopedics, still faces limitation of the insufficient osseointegration. To improve the bioactivity of TC4, introducing the electric environment onto the TC4 surface may be an effective way in the view of the necessity of endogenous electric microenvironment in bone regeneration. Herein, a Volta potential pattern was engendered on the TC4 surface via parallel laser patterning, so as to promote the osteogenic differentiation of cells. A 15 W laser successfully transformed the original α + ß dual phase towards radially distributed lath-like martensite phase in the laser treated region. The atomic lattice distortion between the heterogeneous microstructures of the laser treated and untreated regions leads to a significant Volta potential fluctuation on the TC4 surface. The Volta potential pattern as well as the laser-engraved microgrooves respectively induced mutually orthogonal cell alignments. The hBMSCs osteogenic differentiation was significantly enhanced on the laser treated TC4 surfaces in comparison to the surface without the laser treatment. Moreover, a drastic Volta potential gradient on the TC4 surface (treated with 15 W power and 400 µm interval) resulted in the most pronounced osteogenic differentiation tendency compared to other groups. Modulating the electric environment on the TC4 surface by manipulating the phase transformation may provide an effective way in evoking favorable cell response of bone regeneration, thereby improving the bioactivity of TC4 implant.


Subject(s)
Alloys , Cell Differentiation , Lasers , Mesenchymal Stem Cells , Osteogenesis , Surface Properties , Titanium , Osteogenesis/radiation effects , Osteogenesis/physiology , Alloys/chemistry , Titanium/chemistry , Humans , Mesenchymal Stem Cells/cytology , Cells, Cultured
18.
J Orthop Traumatol ; 25(1): 28, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789881

ABSTRACT

Mesenchymal stem cells are core to bone homeostasis and repair. They both provide the progenitor cells from which bone cells are formed and regulate the local cytokine environment to create a pro-osteogenic environment. Dysregulation of these cells is often seen in orthopaedic pathology and can be manipulated by the physician treating the patient. This narrative review aims to describe the common applications of cell therapies to bone healing whilst also suggesting the future direction of these techniques.


Subject(s)
Cell- and Tissue-Based Therapy , Mesenchymal Stem Cell Transplantation , Humans , Bone Regeneration/physiology , Cell- and Tissue-Based Therapy/methods , Fracture Healing/physiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Osteogenesis/physiology
19.
Acta Biomater ; 182: 81-92, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38734287

ABSTRACT

Tuning cell adhesion geometry can affect cytoskeleton organization and the distribution of cytoskeleton forces, which play critical roles in controlling cell functions. To elucidate the geometrical relationship with cytoskeleton force distribution, it is necessary to control cell morphology. In this study, a series of dextral vortex micropatterns were prepared to precisely control cell morphology for investigating the influence of the curvature degree of adhesion curves on intracellular force distribution and stem cell differentiation at a sub-cellular level. Peripherial actin filaments of micropatterned cells were assembled along the adhesion curves and showed different orientations, filament thicknesses and densities. Focal adhesion and cytoskeleton force distribution were dependent on the curvature degree. Intracellular force distribution was also regulated by adhesion curves. The cytoskeleton and force distribution affected the osteogenic differentiation of mesenchymal stem cells through a YAP/TAZ-mediated mechanotransduction process. Thus, regulation of cell adhesion curvature, especially at cytoskeletal filament level, is critical for cell function manipulation. STATEMENT OF SIGNIFICANCE: In this study, a series of dextral micro-vortexes were prepared and used for the culture of human mesenchymal stem cells (hMSCs) to precisely control adhesive curvatures (0°, 30°, 60°, and 90°). The single MSCs on the micropatterns had the same size and shape but showed distinct focal adhesion (FA) and cytoskeleton orientations. Cellular nanomechanics were observed to be correlated with the curvature degrees, subsequently influencing nuclear morphological features. As a consequence, the localization of the mechanotransduction sensor and activator-YAP/TAZ was affected, influencing osteogenic differentiation. The results revealed the pivotal role of adhesive curvatures in the manipulation of stem cell differentiation via the machanotransduction process, which has rarely been investigated.


Subject(s)
Cell Differentiation , Focal Adhesions , Mechanotransduction, Cellular , Mesenchymal Stem Cells , Osteogenesis , Focal Adhesions/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mechanotransduction, Cellular/physiology , Humans , Osteogenesis/physiology , Actins/metabolism , Cell Adhesion , Cell Shape , YAP-Signaling Proteins
20.
J Dent ; 146: 105028, 2024 07.
Article in English | MEDLINE | ID: mdl-38719135

ABSTRACT

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Dental Papilla , Dentin , Gelatin , Lab-On-A-Chip Devices , Tissue Engineering , Tissue Engineering/methods , Humans , Dental Papilla/cytology , Stem Cells/cytology , Odontogenesis , Osteogenesis/physiology , Methacrylates , Cell Culture Techniques , Microfluidics/methods , Microfluidics/instrumentation , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques, Three Dimensional/instrumentation , Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL