Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Nutrients ; 16(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39064791

ABSTRACT

Earlier laboratory-based evidence has suggested that polyphenol-rich, decaffeinated whole coffee cherry extract (CCE) supports improvements in acute and long-term cognitive performance. To better understand CCE's potential to promote cognitive processing, we conducted a first-of-its-kind remote clinical trial. Participants were randomized into one of two intervention arms: placebo or 200 mg CCE. At the beginning of the study, participants were asked to complete a set of acute cognitive challenges as part of the baseline assessment. Tasks were nearly identical to those used in previous, laboratory-based research. Acute results support that CCE outperformed placebo, reducing omissions and improving accuracy, during working memory and inhibitory control tasks. Long-term results indicate that CCE outperformed placebo on a measure of accuracy. This contributes to the literature in three ways: (1) results improve upon previously reported robust and consistent findings in a real-world setting that a single-dose of CCE acutely improved cognitive performance; (2) results replicate previous laboratory findings but in a real-world setting that long-term CCE supplementation outperformed placebo on measures of accuracy in a working memory task; and (3) it serves as proof of concept of a novel remote clinical trial model that may provide real-world evidence of efficacy while increasing accessibility and cohort diversity.


Subject(s)
Cognition , Memory, Short-Term , Plant Extracts , Humans , Memory, Short-Term/drug effects , Double-Blind Method , Plant Extracts/pharmacology , Male , Female , Adult , Cognition/drug effects , Young Adult , Prunus avium/chemistry , Dietary Supplements , Longitudinal Studies , Inhibition, Psychological
2.
Ultrason Sonochem ; 108: 106980, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981338

ABSTRACT

To obtain high-quality cherry products, ultrasound (US) combined with five chemical pretreatment techniques were used on cherry prior to radio frequency vacuum drying (RFV), including carboxymethyl cellulose coating (CMC), cellulase (CE), ethanol (EA), isomaltooligosaccharide (IMO), and potassium carbonate + ethyl oleate (PC + AEEO). The effect of different pretreatments (US-CMC, US-CE, US-EA, US-IMO, US-(PC + AEEO)) on the drying characteristics, quality properties, texture, and sensory evaluation of cherries was evaluated. Results showed that the dehydration time and energy consumption were decreased by 4.17 - 20.83 % and 3.22 - 19.34 %, respectively, and the contents of individual sugars, soluble solid, total phenolics (TPC), natural active substances, total flavonoids (TFC), and antioxidant properties (DPPH, ABTS and FRAP) were significantly increased after US combined with five chemical treatments (P < 0.05). Moreover, the pretreatment played important role in improving texture properties and surface color retention in the dried cherries. According to the sensory evaluation analysis, the dehydrated cherries pretreated with US-CMC exhibited the highest overall acceptance, texture, crispness, color, and sweet taste showed lower off-odor, bitter taste and sour taste compared to control and other pretreatments. The findings indicate that US-CMC pretreatment is a promising technique for increasing physicochemical qualities and dehydration rate of samples, which provides a novel strategy to processing of dried cherry.


Subject(s)
Desiccation , Prunus avium , Vacuum , Desiccation/methods , Prunus avium/chemistry , Ultrasonic Waves , Antioxidants/chemistry , Radio Waves , Food Handling/methods , Food Quality , Taste , Phenols/analysis , Phenols/chemistry
3.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892529

ABSTRACT

Cardiovascular diseases (CVDs) are a leading cause of mortality worldwide. Therefore, there is increasing interest in dietary interventions to reduce risk factors associated with these conditions. Cherries and berries are rich sources of bioactive compounds and have attracted attention for their potential cardiovascular benefits. This review summarises the current research on the effects of cherry and berry consumption on cardiovascular health, including in vivo studies and clinical trials. These red fruits are rich in phenolic compounds, such as anthocyanins and flavonoids, which have multiple bioactive properties. These properties include antioxidant, anti-inflammatory, and vasodilatory effects. Studies suggest that regular consumption of these fruits may reduce inflammation and oxidative stress, leading to lower blood pressure, improved lipid profiles, and enhanced endothelial function. However, interpreting findings and establishing optimal dosages is a challenge due to the variability in fruit composition, processing methods, and study design. Despite these limitations, the evidence highlights the potential of cherries and berries as components of preventive strategies against CVD. Further research is needed to maximise their health benefits and improve clinical practice.


Subject(s)
Antioxidants , Cardiovascular Diseases , Fruit , Phenols , Prunus avium , Fruit/chemistry , Humans , Cardiovascular Diseases/prevention & control , Prunus avium/chemistry , Chronic Disease/prevention & control , Flavonoids/pharmacology , Anthocyanins/pharmacology , Oxidative Stress/drug effects , Anti-Inflammatory Agents/pharmacology
4.
Int J Biol Macromol ; 274(Pt 2): 133530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945332

ABSTRACT

To expand the utilization of gelatin and pectin derived from agricultural by-products, the composite films composed of gelatin, citrus pectin, cellulose nanofibers (CNF), and polyhexamethylene biguanide hydrochloride (PHMB) were prepared through the solvent casting method. Fourier infrared spectroscopy analysis verified the successful integration of CNF and PHMB into the gelatin-pectin matrix. The incorporation of CNF as a reinforcing agent substantially enhanced the barrier capabilities of the composite film. Moreover, the addition of PHMB, functioning as an antimicrobial agent, not only granted the film with antibacterial properties but also improved its physical characteristics and biodegradability. A water contact angle experiment revealed the film presented a certain degree of hydrophobicity. The optimal performances were attained with a composition in which CNF and PHMB constituted 8 % and 3 %, respectively, of the total weight of gelatin and pectin. As a packaging film, the composite film demonstrated its effectiveness by reducing the decay index and weight loss rate of sweet cherries during a 12-day storage period. In the soil degradation test, the composite film exhibited notable structural degradation by the 16th day. Consequently, the composite film will be used as an innovative and biodegradable packaging material to provide a sustainable solution for food packaging industries.


Subject(s)
Biguanides , Cellulose , Food Packaging , Gelatin , Nanofibers , Pectins , Gelatin/chemistry , Pectins/chemistry , Nanofibers/chemistry , Food Packaging/methods , Cellulose/chemistry , Biguanides/chemistry , Prunus avium/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology
5.
Food Chem ; 455: 139989, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850969

ABSTRACT

Cornelian cherry pomace is produced during the production of juice from this traditional superfood. Due to its high nutritive value, the by-product can be utilized as a source of bioactive compounds. The present study aimed to develop a sustainable methodology for the recovery of bioactive compounds based on the combination of atmospheric cold plasma (CAP) with ultrasound assisted extraction. The pomace was treated with cold plasma under different conditions. Cyclodextrin was used as green extraction enhancer due to its capacity to develop inclusion complexes with bioactive compounds. CAP pretreatment before extraction appeared to enhance the recovery of the target compounds. GC-MS analysis and in vitro digestion analysis conducted in order to evaluate the composition and the protentional bioavailability of the bioactive compounds. CHEMICALS COMPOUNDS: ß-cyclodextrin (PubChem CID: 444041), DPPH free radical (PubChem CID: 2735032), Trolox (PubChem CID: 40634), sodium carbonate (PubChem CID: 10340), gallic acid (PubChem CID: 370) potassium chloride (PubChem CID: 4873), sodium acetate (PubChem CID: 517045), loganic acid (PubChem CID: 89640), pyridine (PubChem CID: 1049, BSTFA(PubChem CID: 94358), potassium chloride (PubChem CID: 4873), ammonium carbonate (PubChem CID: 517111), calcium chloride dehydrate (PubChem CID: 24844), potassium dihydrogen phosphate (PubChem CID: 516951), magnesium chloride hexahydrate (PubChem CID: 24644), sodium hydrogen carbonate (PubChem CID: 516892), sodium chloride (PubChem CID: 5234).


Subject(s)
Plant Extracts , Plasma Gases , Plasma Gases/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Fruit/chemistry , Prunus avium/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Chemical Fractionation/methods , Gas Chromatography-Mass Spectrometry , Ultrasonics
6.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930830

ABSTRACT

The objective of this research was to optimize the natural deep eutectic solvent (NADES) extraction process from sour cherry kernels (Prunus cerasus L.). For polyphenol isolation, conventional solid-liquid extraction was employed using different concentrations of ethanol (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 96%), as well as the innovative NADES extraction technique. In the initial phase of the research, a screening of 10 different NADESs was conducted, while extraction was carried out under constant parameters (50 °C, 1:20 w/w, 60 min). NADES 4, composed of lactic acid and glucose in a molar ratio of 5:1, exhibited the highest efficiency in the polyphenol isolation. In the subsequent phase of the research, response surface methodology (RSM) was utilized to optimize the extraction process. Three independent variables, namely temperature, extraction time, and solid-liquid (S/L) ratio, were examined at three different levels. The extracted samples were analyzed for total phenol (TP) and antioxidant activity using the DPPH, ABTS, and FRAP assays. ANOVA and descriptive statistics (R2 and CV) were performed to fit the applied model. According to RSM, the optimal extraction conditions were determined as follows: temperature of 70 °C, extraction time of 161 min, and S/L ratio of 1:25 w/w.


Subject(s)
Antioxidants , Deep Eutectic Solvents , Polyphenols , Prunus avium , Polyphenols/chemistry , Polyphenols/isolation & purification , Prunus avium/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Deep Eutectic Solvents/chemistry , Plant Extracts/chemistry , Solvents/chemistry
7.
Int J Biol Macromol ; 271(Pt 1): 132618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795880

ABSTRACT

High-temperature blanching (HTB) is the primary process that causes texture softening in frozen yellow peaches. The implementation of low-temperature blanching reduced pectin methyl esterification, increased pectin cross-linking, and mitigated pectin depolymerization during the subsequent HTB, leading to the superior texture of frozen yellow peaches with enhanced water holding capacity, higher fracture stress, and initial modulus. However, adding 2 % calcium lactate (w/v) during low-temperature blanching did not further improve the texture of frozen yellow peaches. Instead, it softened the texture by reducing Na2CO3-soluble pectin (NSP) and increasing water-soluble pectin (WSP) content. This study provided a theoretical basis for applying low-temperature blanching to improve the texture of frozen yellow peaches.


Subject(s)
Freezing , Pectins , Pectins/chemistry , Solubility , Water/chemistry , Cold Temperature , Lactates/chemistry , Calcium Compounds/chemistry , Prunus avium/chemistry , Carbonates/chemistry
8.
Int J Biol Macromol ; 268(Pt 2): 131660, 2024 May.
Article in English | MEDLINE | ID: mdl-38636766

ABSTRACT

The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.


Subject(s)
Chitosan , Nanoparticles , Wettability , Chitosan/chemistry , Nanoparticles/chemistry , Cellulose/chemistry , Rain/chemistry , Zein/chemistry , Tensile Strength , Water/chemistry , Prunus avium/chemistry , Permeability
9.
Int J Biol Macromol ; 266(Pt 1): 130932, 2024 May.
Article in English | MEDLINE | ID: mdl-38527683

ABSTRACT

The fabrication possibility of nanocomposite film from sweet cherry tree exudate gum (SCG) was studied. To improve SCG film properties, oxidation with hydrogen peroxide, ultraviolet irradiation (UV-A and UV-C), and TiO2 nanoparticles (T-NPs) were used. Hydrogen peroxide oxidation at higher amounts decreased the water vapor permeability (WVP) and thickness and increased the mechanical properties and transparency. In comparison with the UV-A, UV irradiation of the C-type increased permeability, and elongation at break (EAB) and thickness, but reduced the tensile strength (TS), solubility, and transparency. The permeability and tensile strength were increased and elongation at break was decreased at a longer time of irradiation. The transparency values of fabricated films ranged from 65.3 to 79.5 % and WVP were in the range of 2.32-4.72 (×10-10 g/m.s.Pa). The measured TS of the SCG films were between 2.2 and 5 MPa and the EAB of the SCG films was between 35 and 68.7 %. The FTIR spectrum and SEM images revealed that the treatments could affect the bonds and the smoothness of the film surface, respectively. Images provided by AFM showed that the roughness of the films was increased by the addition of T-NPs. The incorporation of T-NPs increased the TS and decreased EAB and WVP. These results indicated that oxidation, UV irradiation and nanomaterials incorporation could be used to improve SCG film properties that are related to food packaging material.


Subject(s)
Hydrogen Peroxide , Nanoparticles , Oxidation-Reduction , Permeability , Plant Gums , Prunus avium , Titanium , Ultraviolet Rays , Titanium/chemistry , Hydrogen Peroxide/chemistry , Nanoparticles/chemistry , Plant Gums/chemistry , Prunus avium/chemistry , Steam , Nanocomposites/chemistry , Tensile Strength , Solubility
10.
Gene ; 880: 147602, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37422177

ABSTRACT

The color of a fruit is an important contributor to the perception of its nutritional value. It is widely acknowledged that the color of sweet cherry changes obviously during ripening. Variations in anthocyanins and flavonoids account for the heterogeneous color of sweet cherries. In this study, we showed that anthocyanins but not carotenoids determine the color of sweet cherry fruits. The difference between red-yellow and red sweet cherry may be attributed to seven anthocyanins, including Cyanidin-3-O-arabinoside, Cyanidin-3,5-O-diglucoside, Cyanidin 3-xyloside, Peonidin-3-O-glucoside, Peonidin-3-O-rutinoside, Cyanidin-3-O-galactoside, Cyanidin-3-O-glucoside (Kuromanin), Peonidin-3-O-rutinoside-5-O-glucoside, Pelargonidin-3-O-glucoside and Pelargonidin-3-O-rutinoside. The content of 85 flavonols differed between red and red-yellow sweet cherries. The transcriptional analysis identified 15 key structural genes involved in the flavonoid metabolic pathway and four R2R3-MYB transcription factors. The expression level of Pac4CL, PacPAL, PacCHS1, PacCHS2, PacCHI, PacF3H1, PacF3H2, PacF3'H, PacDFR, PacANS1, PacANS2, PacBZ1 and four R2R3-MYB were positively correlated with anthocyanin content (ps < 0.05). PacFLS1, PacFLS2 and PacFLS3 expression was negatively correlated with anthocyanin content but positively correlated with flavonols content (ps < 0.05). Overall, our findings suggests that the heterogeneous expression of structural genes in the flavonoid metabolic pathway accounts for the variation in levels of final metabolites, leading to differences between red 'Red-Light' and red-yellow 'Bright Pearl'.


Subject(s)
Anthocyanins , Prunus avium , Prunus avium/genetics , Prunus avium/chemistry , Prunus avium/metabolism , Flavonoids/metabolism , Glucosides/metabolism , Flavonols , Fruit/metabolism
11.
Mol Nutr Food Res ; 67(9): e2200550, 2023 05.
Article in English | MEDLINE | ID: mdl-36843307

ABSTRACT

SCOPE: Tart cherries (TCs) contain high levels of anthocyanins that exert potent antioxidant and antiinflammatory effects and potentially benefit individuals with gout. METHODS AND RESULTS: This study aims to quantitate the major anthocyanins in TC Juice Concentrate (TCJC) and identify the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of the major anthocyanin cyanidin-3-glucosylrutinoside (C3GR). A PK-PD study enrolling human subjects with a history of gout is performed. Subjects are randomized to receive either 60 or 120 mL of TCJC. Anthocyanins are quantitated using liquid chromatography-mass spectroscopy (LCMS). Antioxidant and antiinflammatory mRNA expression is measured using real-time qPCR before and after the administration of TCJC. A population PK model (popPK) is fit to the experimental data, and an indirect PD model (IDR) is constructed in Monolix. CONCLUSION: Of the bioavailable anthocyanins, C3GR achieves the highest plasma concentration in a dose-dependent manner. A popPK predicts anthocyanin exposure, and an IDR produces reasonable approximations of PD effects.


Subject(s)
Prunus avium , Prunus , Humans , Prunus avium/chemistry , Antioxidants/pharmacology , Anthocyanins/analysis , Prunus/chemistry , Fruit and Vegetable Juices/analysis
12.
Sensors (Basel) ; 23(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36617077

ABSTRACT

Determining and applying 'good' postharvest and quality control practices for otherwise highly sensitive fruits, such as sour cherry, is critical, as they serve as excellent media for a wide variety of microbial contaminants. The objective of this research was to report two series of experiments on the modified atmosphere storage (MAP) of sour cherries (Prunus cerasus L. var. Kántorjánosi, Újfehértói fürtös). Firstly, the significant effect of different washing pre-treatments on various quality indices was examined (i.e., headspace gas composition, weight loss, decay rate, color, firmness, soluble solid content, total plate count) in MAP-packed fruits. Subsequently, the applicability of near infrared (NIR) spectroscopy combined with chemometrics was investigated to detect the effect of various storage conditions (packed as control or MAP, stored at 3 or 5 °C) on sour cherries of different perceived ripeness. Significant differences were found for oxygen concentration when two perforations were applied on the packages of 'Kántorjánosi' (p < 0.01); weight loss when 'Kánorjánosi' (p < 0.001) and 'Újfehértói fürtös' (p < 0.01) were packed in MAP; SSC when 'Újfehértói fürtös' samples were ozone-treated (p < 0.05); and total plate count when 'Kántorjánosi' samples were ozone-treated (p < 0.01). The difference spectra reflected the high variability in the samples, and the detectable effects of different packaging. Based on the investigations with the soft independent modelling of class analogies (SIMCA), different packaging and storage resulted in significant differences in most of the cases even on the first storage day, which in many cases increased by the end of storage. The soft independent modelling of class analogies proved to be suitable for classification with apparent error rates between 0 and 0.5 during prediction regardless of ripeness. The research findings suggest the further correlation of NIR spectroscopic and reference parameters to support postharvest handling and fast quality control.


Subject(s)
Ozone , Prunus avium , Prunus avium/chemistry , Spectroscopy, Near-Infrared , Fruit/chemistry , Ozone/analysis , Atmosphere
13.
J Sci Food Agric ; 103(2): 463-478, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-35870155

ABSTRACT

Sweet cherry (Prunus avium L.) is a highly valued fruit, whose quality can be evaluated using several objective methodologies, such as calibre, colour, texture, soluble solids content (SSC), titratable acidity (TA), as well as maturity indexes. Functional and nutritional compounds are also frequently determined, in response to consumer demand. The aim of the present review is to clarify and establish quality evaluation parameters and methodologies for the whole cherry supply chain, in order to promote easy and faithful communication among all stakeholders. The use of near-infrared spectroscopy (NIRS) as a non-destructive and expeditious method for assessing some quality parameters is discussed. In this review, the results of a wide survey to assess the most common methodologies for cherry quality evaluation, carried out among cherry researchers and producers within the framework of the COST Action FA1104 'Sustainable production of high-quality cherries for the European market', are also reported. The standardisation of quality evaluation parameters is expected to contribute to the preservation and shelf-life extension of sweet cherries, and the valorisation of the whole supply chain. For future studies on sweet cherry, we put forward a proposal regarding both sample size and the tests chosen to evaluate each parameter. © 2022 Society of Chemical Industry.


Subject(s)
Prunus avium , Prunus , Prunus avium/chemistry , Prunus/chemistry , Fruit/chemistry
14.
Food Sci Technol Int ; 29(4): 299-309, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35102759

ABSTRACT

The effects of pre- and postharvest calcium gluconate (Ca-Glu) treatments on some physicochemical characteristics and bioactive compounds of sweet cherry cv. Sweetheart during cold storage were investigated. For preharvest treatments, the Ca-Glu (1%) solution was applied to the cherry trees two times at 21 and 35 days after full bloom stage. Control trees were sprayed with distilled water at the same days. Sweet cherries, sprayed with and without Ca-Glu, were dipped into cold water (4 °C) containing calcium gluconate (1%) for 30 s and only in cold water (4 °C) as control, after harvest Following each treatment, cherries were placed in plastic boxes and stored at 1 ± 0.5 °C and 90 ± 5% relative humidity for 3 weeks. The weight losses of cherries increased over time but calcium (Ca) treatments, especially pre-and postharvest combination, limited these increases compared to control groups. The best result for suppressing the respiration rate of cherries was also obtained from combined treatment. Moreover, combined treatment delayed the losses of titratable acidity, fruit firmness, decay rate and sensory quality in sweet cherries during storage comparison with the pre or postharvest application of Ca-Glu alone. The effect of Ca-Clu treatments on stem chlorophyll content and antioxidant activity was not significant. Preharvest and combined treatments retarded the loss of ascorbic acid content of cherries compared to postharvest and control treatments. The total phenolic and anthocyanin content increased regularly throughout storage, regardless of treatment; however, Ca treatments delayed the accumulation of these compounds. As a result, the combined Ca-Glu treatment could be a promising method for maintaining some physicochemical characteristics and bioactive compounds in sweet cherries during cold storage.


Subject(s)
Prunus avium , Prunus avium/chemistry , Calcium Gluconate/analysis , Calcium Gluconate/pharmacology , Antioxidants/analysis , Ascorbic Acid/analysis , Fruit/chemistry , Water/analysis
15.
Int J Mol Sci ; 23(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012299

ABSTRACT

Increased permeability of the epithelial and endothelial cell layers results in the onset of pathogenic mechanisms. In both cell types, cell-cell connections play a regulatory role in altering membrane permeability. The aim of this study was to investigate the modulating effect of anthocyanin-rich extract (AC) on TJ proteins in inflammatory Caco-2 and HUVEC monolayers. Distribution of Occludin and zonula occludens-1 (ZO-1) were investigated by immunohistochemical staining and the protein levels were measured by flow cytometry. The mRNA expression was determined by quantitative real-time PCR. The transepithelial electrical resistance (TEER) values were measured during a permeability assay on HUVEC cell culture. As a result of inflammatory induction by TNF-α, redistribution of proteins was observed in Caco-2 cell culture, which was reduced by AC treatment. In HUVEC cell culture, the decrease in protein and mRNA expression was more dominant during inflammatory induction, which was compensated for by the AC treatment. Overall, AC positively affected the expression of the examined cell-binding structures forming the membrane on both cell types.


Subject(s)
Occludin , Plant Extracts , Prunus avium , Tight Junctions , Zonula Occludens-1 Protein , Anthocyanins/metabolism , Caco-2 Cells , Humans , Intestinal Mucosa/metabolism , Occludin/genetics , Occludin/metabolism , Plant Extracts/pharmacology , Prunus avium/chemistry , RNA, Messenger/metabolism , Tight Junctions/metabolism , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
16.
Int J Biol Macromol ; 214: 1-9, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35705124

ABSTRACT

Sweet cherry is prone to senesce and decay due to high postharvest respiration rate and fungal infection. The effects of natamycin-chitosan coating on physicochemical and microbial properties of sweet cherries stored at 4 °C were investigated. Scanning electron microscopy results revealed that natamycin was more uniformly distributed on sweet cherry pericarps with the help of chitosan coating. Respiration rate of sweet cherries was suppressed by chitosan coating during the storage and as a result, total soluble solids (13.53 %-13.80 %) and titratable acidity (0.91 %-0.93 %) were remained higher values and weight loss (2.54 %-2.85 %) was decreased in chitosan and natamycin-chitosan groups. Although both natamycin and chitosan were effective in inhibiting yeast and mold, sweet cherries treated with the combination of natamycin and chitosan showed significantly lower yeast and mold count (3.31 log CFU/g) and decay rate (1.67 %) compared with control. Natamycin combined chitosan inhibited the pathogenic fungi of sweet cherries, such as Alternaria, Cladosporium and Penicillium. These results indicated that postharvest natamycin-chitosan coating has great advantages in maintaining fruit quality, inhibiting fungi, and reducing decay rate of sweet cherry.


Subject(s)
Chitosan , Prunus avium , Chitosan/chemistry , Food Preservation/methods , Fruit/chemistry , Fungi , Natamycin/pharmacology , Prunus avium/chemistry , Saccharomyces cerevisiae
17.
J Agric Food Chem ; 70(26): 7993-8009, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35729789

ABSTRACT

Sweet cherry pomace is an important source of phenolic compounds with beneficial health properties. As after the extraction of phenolic compounds, a phenolic fraction called nonextractable polyphenols (NEPs) remains usually retained in the extraction residue, alkaline and acid hydrolyses and enzymatic-assisted extraction (EAE) were carried out in this work to recover NEPs from the residue of conventional extraction from sweet cherry pomace. In vitro and in vivo evaluation of the antioxidant, antihypertensive, antiaging, and neuroprotective capacities employing Caenorhabditis elegans was achieved for the first time. Extractable phenolic compounds and NEPs were separated and identified by families by high-performance thin-layer chromatography (HPTLC) with UV/Vis detection. A total of 39 phenolic compounds were tentatively identified in all extracts by direct analysis in real-time high-resolution mass spectrometry (DART-Orbitrap-HRMS). EAE extracts presented the highest in vitro and in vivo antioxidant capacity as well as the highest in vivo antiaging and neuroprotective capacities. These results showed that NEPs with interesting biological properties are retained in the extraction residue, being usually underestimated and discarded.


Subject(s)
Polyphenols , Prunus avium , Antioxidants/chemistry , Chromatography, High Pressure Liquid/methods , Humans , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology , Prunus avium/chemistry
18.
Food Chem ; 385: 132688, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35305433

ABSTRACT

In vitro digestion and absorption simulation processes of non-extractable polyphenols (NEPs) obtained by pressurized liquid extraction combined with enzymatic-assisted extraction with Promod enzyme (PLE-EAE) from the residue of conventional extraction of sweet cherry pomace were studied. In general, total phenolic and proanthocyanidin contents decreased in each phase of the digestion. However, the antioxidant capacity increased when the digestion process progressed. In addition, the highest total phenolic and proanthocyanidin contents and antioxidant capacity were obtained in the absorbed fraction. NEPs from PLE-EAE extract, digestive fractions, absorbed and unabsorbed fractions were analyzed by ultra-high-performance liquid chromatography coupled to electrospray ionization quadrupole Exactive-Orbitrap mass spectrometry (UHPLC-ESI-Q-Orbitrap-MS). Fifteen NEPs were identified in the intestinal fraction and five in the absorbed fraction after the digestion process. Results obtained in this study define for the first time the bioavailability of antioxidant NEPs obtained from sweet cherry pomace.


Subject(s)
Prunus avium , Antioxidants/chemistry , Biological Availability , Chromatography, High Pressure Liquid/methods , Phenols/analysis , Plant Extracts/chemistry , Polyphenols/analysis , Prunus avium/chemistry
19.
Phytochem Anal ; 33(4): 564-576, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35122339

ABSTRACT

INTRODUCTION: Sweet cherry (Prunus avium L.), one of the most consumed fruits in the world, is rich in phenolic and especially anthocyanin content. OBJECTIVE: The aim of this study was to evaluate the phenolic properties of 11 different sweet cherry genotypes collected from Giresun, Turkey. METHODS: Total phenol, flavonoid, anthocyanin and antioxidant properties were observed spectrophotometrically in three different extraction (conventional, microwave-assisted and ultrasound-assisted) processes. Major phenolic, anthocyanin and antioxidant structures were visually assessed by high-performance thin layer chromatography (HPTLC). Various phenolics in its structure were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: T2 and E5 genotypes had the highest content in terms of total phenol, flavonoid, anthocyanin and antioxidant activity. In HPTLC, cherry samples contained high levels of chlorogenic acid, neochlorogenic acid, p-coumaroylquinic acid, rutin and cyanidin-3 rutinoside. Among the phenolics examined in the LC-MS/MS method, the major compounds in the structure of cherry were found to be chlorogenic acid, rutin and catechin. The T2 genotype had higher phenolics than the other cherry samples (chlorogenic acid 19.3 mg/100 g; catechin; 3.8 mg/100 g; rutin 33.1 mg/100 g). CONCLUSION: As a result, T2 and E5 genotypes had higher phenolic and antioxidant activity compared to other genotypes and commercial cultivars. It can be said that the antioxidant contents of these genotypes are due to the high anthocyanin amount in their structures. In addition, T2 genotype contained more major phenolics than other cherries. In the next stage, it is recommended to carry out studies on the cultivation of these two varieties.


Subject(s)
Catechin , Prunus avium , Anthocyanins/analysis , Antioxidants/analysis , Catechin/analysis , Chlorogenic Acid/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid , Flavonoids/analysis , Fruit/chemistry , Fruit/genetics , Genotype , Phenols/analysis , Plant Extracts/chemistry , Prunus avium/chemistry , Prunus avium/genetics , Rutin/analysis , Tandem Mass Spectrometry , Turkey
20.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163961

ABSTRACT

New plant oils as a potential natural source of nutraceutical compounds are still being sought. The main components of eight cultivars ('Koral', 'Lucyna', 'Montmorency', 'Naumburger', 'Wanda', 'Wigor', 'Wolynska', and 'Wróble') of sour cherry (Prunus cerasus L.) grown in Poland, including crude fat, protein, and oil content, were evaluated. The extracted oils were analysed for chemical and biological activity. The oils had an average peroxide value of 1.49 mEq O2/kg, acid value of 1.20 mg KOH/g, a saponification value of 184 mg of KOH/g, and iodine value of 120 g I2/100 g of oil. The sour cherry oil contained linoleic (39.1-46.2%) and oleic (25.4-41.0%) acids as the major components with smaller concentrations of α-eleostearic acid (8.00-15.62%), palmitic acid (5.45-7.41%), and stearic acid (2.49-3.17%). The content of sterols and squalene varied significantly in all the studied cultivars and ranged between 336-973 mg/100 g and 66-102 mg/100 g of oil. The contents of total tocochromanols, polyphenols, and carotenoids were 119-164, 19.6-29.5, and 0.56-1.61 mg/100 g oil, respectively. The cultivar providing the highest amounts of oil and characterised by the highest content of PUFA (including linoleic acid), plant sterols, α-and ß-tocopherol, as well as the highest total polyphenol and total carotenoids content was been found to be 'Naumburger'. The antioxidant capacity of sour cherry kernel oils, measured using the DPPH• and ABTS•+ methods, ranged from 57.7 to 63.5 and from 38.2 to 43.2 mg trolox/100 g oil, respectively. The results of the present study provide important information about potential possibilities of application of Prunus cerasus kernel oils in cosmetic products and pharmaceuticals offering health benefits.


Subject(s)
Phytochemicals/chemistry , Prunus avium/chemistry , Prunus avium/metabolism , Antioxidants/chemistry , Carotenoids/analysis , Fruit/chemistry , Linoleic Acid/analysis , Phytochemicals/analysis , Phytosterols/analysis , Plant Extracts/chemistry , Plant Oils/chemistry , Poland , Polyphenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL