Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters








Publication year range
1.
BMC Genomics ; 25(1): 751, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090588

ABSTRACT

BACKGROUND: Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS: To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS: The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Hordeum , Plant Diseases , Puccinia , Hordeum/microbiology , Hordeum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Puccinia/pathogenicity , Puccinia/genetics , Virulence/genetics , Chromosome Mapping , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genes, Plant , Phenotype
2.
Theor Appl Genet ; 137(9): 199, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110238

ABSTRACT

KEY MESSAGE: A new stripe rust resistance gene YrBDT in Chinese landrace wheat Baidatou was mapped to a 943.6-kb interval on chromosome arm 6DS and co-segregated with a marker CAPS3 developed from candidate gene TraesCS6D03G0027300. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a devastating foliar disease of wheat. Chinese landrace wheat Baidatou has shown high resistance to a broad spectrum of Pst races at both the seedling and adult-plant stages for decades in the Longnan region of Gansu province, a hot spot for stripe rust epidemics. Here, we report fine mapping and candidate gene analysis of stripe rust resistance gene YrBDT in Baidatou. Analysis of F1, F2 plants and F2:3 lines indicated that resistance in Baidatou to Pst race CYR31 was conferred by a single dominant gene, temporarily designated YrBDT. Bulked segregant exome capture sequencing (BSE-seq) analysis revealed 61 high-confidence polymorphic SNPs concentrated in a 5.4-Mb interval at the distal of chromosome arm 6DS. Several SNPs and InDels were also identified by genome mining of DNA sampled from the parents and contrasting bulks. The YrBDT locus was mapped to a 943.6-kb (4,658,322-5,601,880 bp) genomic region spanned by markers STS2 and STS3 based on IWGSC RefSeq v2.1, including five putative disease resistance genes. There was high collinearity of the target interval among Chinese Spring RefSeq v2.1, Ae. tauschii AL8/78 and Fielder genomes. The expression level of TraesCS6D03G0027300 showed significant association with Pst infection, and a gene-specific marker CAPS3 developed from TraesCS6D03G0027300 co-segregated with YrBDT suggesting this gene as a candidate of YrBDT. The resistance gene and flanking markers can be used in marker-assisted selection for improvement of stripe rust resistance.


Subject(s)
Chromosome Mapping , Disease Resistance , Genes, Plant , Plant Diseases , Polymorphism, Single Nucleotide , Triticum , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Triticum/genetics , Triticum/microbiology , Genetic Markers , Basidiomycota/pathogenicity , Puccinia/pathogenicity , Genetic Linkage , Phenotype
3.
Sci Rep ; 14(1): 15428, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965257

ABSTRACT

Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Hordeum , Plant Diseases , Quantitative Trait Loci , Seedlings , Hordeum/genetics , Hordeum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Seedlings/genetics , Seedlings/microbiology , Disease Resistance/genetics , Puccinia/pathogenicity , Genotype , Polymorphism, Single Nucleotide , Phenotype , Basidiomycota , Chromosome Mapping , Plant Breeding
4.
BMC Genom Data ; 25(1): 69, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009972

ABSTRACT

Wheat is an essential food commodity cultivated throughout the world. However, this crop faces continuous threats from fungal pathogens, leaf rust (LR) and stripe rust (YR). To continue feeding the growing population, these major destructors of wheat must be effectively countered by enhancing the genetic diversity of cultivated germplasm. In this study, an introgression line with hexaploid background (ILsp3603) carrying resistance against Pt pathotypes 77-5 (121R63-1), 77-9 (121R60-1) and Pst pathotypes 46S119 (46E159), 110S119 (110E159), 238S119 (238E159) was developed from donor wheat wild progenitor, Aegilops speltoides acc pau 3603. To understand the genetic basis of resistance and map these genes (named Lrsp3603 and Yrsp3603), inheritance studies were carried out in F6 and F7 mapping population, developed by crossing ILsp3603 with LR and YR susceptible cultivar WL711, which revealed a monogenic (single gene) inheritance pattern for each of these traits. Bulk segregant analysis combined with 35 K Axiom SNP array genotyping mapped both genes as separate entities on the short arm of chromosome 6B. A genetic linkage map, comprising five markers, 1 SNP, 1 PLUG and three gene based SSRs, covered a genetic distance of 12.65 cM. Lrsp3603 was flanked by markers Tag-SSR14 (located proximally at 2.42 cM) and SNP AX-94542331 (at 3.28 cM) while Yrsp3603 was mapped at one end closest to AX-94542331 at 6.62 cM distance. Functional annotation of Lrsp3603 target region (∼ 1 Mbp) revealed 10 gene IDs associated with disease resistance mechanisms including three encoding typical R gene domains.


Subject(s)
Aegilops , Basidiomycota , Chromosome Mapping , Disease Resistance , Plant Diseases , Polymorphism, Single Nucleotide , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Polymorphism, Single Nucleotide/genetics , Aegilops/genetics , Aegilops/microbiology , Basidiomycota/pathogenicity , Genes, Plant/genetics , Triticum/genetics , Triticum/microbiology , Puccinia/pathogenicity
5.
PeerJ ; 12: e17633, 2024.
Article in English | MEDLINE | ID: mdl-38948208

ABSTRACT

Wheat stem rust, which is caused by Puccinia graminis f. sp. tritici (Pgt), is a highly destructive disease that affects wheat crops on a global scale. In this study, the reactions of 150 bread wheat varieties were evaluated for natural Pgt infection at the adult-plant stage in the 2019-2020 and 2020-2021 growing seasons, and they were analyzed using specific molecular markers to detect stem rust resistance genes (Sr22, Sr24, Sr25, Sr26, Sr31, Sr38, Sr50, and Sr57). Based on phenotypic data, the majority of the varieties (62%) were resistant or moderately resistant to natural Pgt infection. According to molecular results, it was identified that Sr57 was present in 103 varieties, Sr50 in nine varieties, Sr25 in six varieties, and Sr22, Sr31, and Sr38 in one variety each. Additionally, their combinations Sr25 + Sr50, Sr31 + Sr57, Sr38 + Sr50, and Sr38 + Sr57 were detected in these varieties. On the other hand, Sr24 and Sr26 were not identified. In addition, many varieties had low stem rust scores, including a large minority that lacked Sr57. These varieties must have useful resistance to stem rust and could be the basis for selecting greater, possibly durable resistance.


Subject(s)
Disease Resistance , Genetic Variation , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Puccinia/pathogenicity , Genetic Variation/genetics , Plant Stems/microbiology , Plant Stems/immunology , Plant Stems/genetics , Genes, Plant , Basidiomycota/pathogenicity
6.
Mol Plant Pathol ; 25(7): e13490, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952297

ABSTRACT

Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia , Triticum , Triticum/microbiology , Triticum/genetics , Triticum/immunology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Puccinia/pathogenicity , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Plant , Virulence/genetics , Mutation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Basidiomycota/pathogenicity , Basidiomycota/genetics , Plant Leaves/microbiology , Plant Leaves/immunology , Cell Death , Sequence Deletion/genetics
7.
Theor Appl Genet ; 137(7): 152, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850423

ABSTRACT

KEY MESSAGE: The durable stripe rust resistance gene Yr30 was fine-mapped to a 610-kb region in which five candidate genes were identified by expression analysis and sequence polymorphisms. The emergence of genetically diverse and more aggressive races of Puccinia striiformis f. sp. tritici (Pst) in the past twenty years has resulted in global stripe rust outbreaks and the rapid breakdown of resistance genes. Yr30 is an adult plant resistance (APR) gene with broad-spectrum effectiveness and its durability. Here, we fine-mapped the YR30 locus to a 0.52-cM interval using 1629 individuals derived from residual heterozygous F5:6 plants in a Yaco"S"/Mingxian169 recombinant inbred line population. This interval corresponded to a 610-kb region in the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 2.1 on chromosome arm 3BS harboring 30 high-confidence genes. Five genes were identified as candidate genes based on functional annotation, expression analysis by RNA-seq and sequence polymorphisms between cultivars with and without Yr30 based on resequencing. Haplotype analysis of the target region identified six haplotypes (YR30_h1-YR30_h6) in a panel of 1215 wheat accessions based on the 660K feature genotyping array. Lines with YR30_h6 displayed more resistance to stripe rust than the other five haplotypes. Near-isogenic lines (NILs) with Yr30 showed a 32.94% higher grain yield than susceptible counterparts when grown in a stripe rust nursery, whereas there was no difference in grain yield under rust-free conditions. These results lay a foundation for map-based cloning Yr30.


Subject(s)
Chromosome Mapping , Disease Resistance , Genes, Plant , Haplotypes , Plant Diseases , Puccinia , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosome Mapping/methods , Puccinia/pathogenicity , Basidiomycota/pathogenicity , Polymorphism, Single Nucleotide , Chromosomes, Plant/genetics
8.
New Phytol ; 243(2): 537-542, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38803104

ABSTRACT

Ten years ago, (black) stem rust - the most damaging of wheat (Triticum aestivum) rusts - re-emerged in western Europe. Disease incidences have since increased in scale and frequency. Here, we investigated the likely underlying causes and used those to propose urgently needed mitigating actions. We report that the first large-scale UK outbreak of the wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt), in 2022 may have been caused by timely arrival of airborne urediniospores from southwest Europe. The drive towards later-maturing wheat varieties in the UK may be exacerbating Pgt incidences, which could have disastrous consequences. Indeed, infection assays showed that two UK Pgt isolates from 2022 could infect over 96% of current UK wheat varieties. We determined that the temperature response data in current disease risk simulation models are outdated. Analysis of germination rates for three current UK Pgt isolates showed substantial variation in temperature response functions, suggesting that the accuracy of disease risk simulations would be substantially enhanced by incorporating data from prevailing Pgt isolates. As Pgt incidences continue to accelerate in western Europe, we advocate for urgent action to curtail Pgt losses and help safeguard future wheat production across the region.


Subject(s)
Plant Diseases , Plant Stems , Triticum , Triticum/microbiology , Plant Diseases/microbiology , Europe , Plant Stems/microbiology , Puccinia/pathogenicity , Puccinia/physiology , Temperature , Basidiomycota/physiology , Basidiomycota/pathogenicity , United Kingdom/epidemiology
9.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698276

ABSTRACT

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Subject(s)
Aegilops , Basidiomycota , Chromosome Mapping , Disease Resistance , Gene Expression Profiling , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Aegilops/genetics , Aegilops/microbiology , Plant Breeding , Transcriptome , Chromosomes, Plant/genetics , Puccinia/pathogenicity , Puccinia/physiology , Gene Expression Regulation, Plant
10.
Genes (Basel) ; 15(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38790172

ABSTRACT

Puccinia striiformis f. sp. tritici (Pst) is adept at overcoming resistance in wheat cultivars, through variations in virulence in the western provinces of China. To apply disease management strategies, it is essential to understand the temporal and spatial dynamics of Pst populations. This study aimed to evaluate the virulence and molecular diversity of 84 old Pst isolates, in comparison to 59 newer ones. By using 19 Chinese wheat differentials, we identified 98 pathotypes, showing virulence complexity ranging from 0 to 16. Associations between 23 Yr gene pairs showed linkage disequilibrium and have the potential for gene pyramiding. The new Pst isolates had a higher number of polymorphic alleles (1.97), while the older isolates had a slightly higher number of effective alleles, Shannon's information, and diversity. The Gansu Pst population had the highest diversity (uh = 0.35), while the Guizhou population was the least diverse. Analysis of molecular variance revealed that 94% of the observed variation occurred within Pst populations across the four provinces, while 6% was attributed to differences among populations. Overall, Pst populations displayed a higher pathotypic diversity of H > 2.5 and a genotypic diversity of 96%. This underscores the need to develop gene-pyramided cultivars to enhance the durability of resistance.


Subject(s)
Plant Diseases , Puccinia , Triticum , Puccinia/pathogenicity , Puccinia/genetics , Triticum/microbiology , Triticum/genetics , China , Virulence/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Genetic Variation , Linkage Disequilibrium , Disease Resistance/genetics
11.
Genes (Basel) ; 15(5)2024 05 03.
Article in English | MEDLINE | ID: mdl-38790212

ABSTRACT

Leaf rust caused by the pathogen Puccinia triticina (Pt) is a destructive fungal disease of wheat that occurs in almost all wheat-growing areas across the globe. Genetic resistance has proven to be the best solution to mitigate the disease. Wheat breeders are continuously seeking new diversified and durable sources of resistance to use in developing new varieties. We developed recombinant inbred line (RIL) populations from two leaf rust-resistant genotypes (Kenya Kudu and AUS12568) introduced from Kenya to identify and characterize resistance to Pt and to develop markers linked closely to the resistance that was found. Our studies detected four QTL conferring adult plant resistance (APR) to leaf rust. Two of these loci are associated with known genes, Lr46 and Lr68, residing on chromosomes 1B and 7B, respectively. The remaining two, QLrKK_2B and QLrAus12568_5A, contributed by Kenya Kudu and AUS12568 respectively, are putatively new loci for Pt resistance. Both QLrKK_2B and QLrAus12568_5A were found to interact additively with Lr46 in significantly reducing the disease severity at adult plant growth stages in the field. We further developed a suite of six closely linked markers within the QLrAus12568_5A locus and four within the QLrKK_2B region. Among these, markers sunKASP_522 and sunKASP_524, flanking QLrAus12568_5A, and sunKASP_536, distal to QLrKK_2B, were identified as the most closely linked and reliable for marker-assisted selection. The markers were validated on a selection of 64 Australian wheat varieties and found to be polymorphic and robust, allowing for clear allelic discrimination. The identified new loci and linked molecular markers will enable rapid adoption by breeders in developing wheat varieties carrying diversified and durable resistance to leaf rust.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/growth & development , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Puccinia/pathogenicity , Kenya , Genetic Markers , Chromosome Mapping , Basidiomycota/pathogenicity , Genotype , Chromosomes, Plant/genetics
12.
Plant Dis ; 108(7): 1959-1963, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38277650

ABSTRACT

Puccinia coronata f. sp. avenae (Pca) is an important foliar pathogen of oat which causes crown rust disease. The virulence profile of 48 Pca isolates derived from different locations in Australia was characterized using a collection of oat lines often utilized in rust surveys in the United States and Australia. This analysis indicates that Pca populations in Eastern Australia are broadly virulent, which contrasts with the population in Western Australia (WA). Several oat lines/Pc genes are effective against all rust samples collected from WA, suggesting they may provide useful resistance in this region if deployed in combination. We identified 19 lines from the United States oat differential set that display disease resistance to Pca in WA, with some in agreement with previous rust survey reports. We adopted the 10-letter nomenclature system to define oat crown rust races in Australia and compare the frequency of those virulence traits to published data from the United States. Based on this nomenclature, 42 unique races were detected among the 48 isolates, reflecting the high diversity of virulence phenotypes for Pca in Australia. Nevertheless, the Pca population in the United States is substantially more broadly virulent than that of Australia. Close examination of resistance profiles for the oat differential set lines after infection with Pca supports hypotheses of allelism or redundancy among Pc genes or the presence of several resistance genes in some oat differential lines. These findings illustrate the need to deconvolute the oat differential set using molecular tools.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Avena , Plant Diseases , Puccinia , Avena/microbiology , Plant Diseases/microbiology , Australia , Virulence/genetics , Puccinia/pathogenicity , Puccinia/genetics , Disease Resistance/genetics , United States , Basidiomycota/genetics , Basidiomycota/pathogenicity , Basidiomycota/physiology
14.
BMC Plant Biol ; 22(1): 111, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279089

ABSTRACT

BACKGROUND: Owing to their excellent resistance to abiotic and biotic stress, Thinopyrum intermedium (2n = 6x = 42, JJJsJsStSt) and Th. ponticum (2n = 10x = 70) are both widely utilized in wheat germplasm innovation programs. Disomic substitution lines (DSLs) carrying one pair of alien chromosomes are valuable bridge materials for transmission of novel genes, fluorescence in situ hybridization (FISH) karyotype construction and specific molecular marker development. RESULTS: Six wheat-Thinopyrum DSLs derived from crosses between Abbondanza nullisomic lines (2n = 40) and two octoploid Trititrigia lines (2n = 8x = 56), were characterized by sequential FISH-genome in situ hybridization (GISH), multicolor GISH (mc-GISH), and an analysis of the wheat 15 K SNP array combined with molecular marker selection. ES-9 (DS2St (2A)) and ES-10 (DS3St (3D)) are wheat-Th. ponticum DSLs, while ES-23 (DS2St (2A)), ES-24 (DS3St (3D)), ES-25(DS2St (2B)), and ES-26 (DS2St (2D)) are wheat-Th. intermedium DSLs. ES-9, ES-23, ES-25 and ES-26 conferred high thousand-kernel weight and stripe rust resistance at adult stages, while ES-10 and ES-24 were highly resistant to stripe rust at all stages. Furthermore, cytological analysis showed that the alien chromosomes belonging to the same homoeologous group (2 or 3) derived from different donors carried the same FISH karyotype and could form a bivalent. Based on specific-locus amplified fragment sequencing (SLAF-seq), two 2St-chromosome-specific markers (PTH-005 and PTH-013) and two 3St-chromosome-specific markers (PTH-113 and PTH-135) were developed. CONCLUSIONS: The six wheat-Thinopyrum DSLs conferring stripe rust resistance can be used as bridging parents for transmission of valuable resistance genes. The utility of PTH-113 and PTH-135 in a BC1F2 population showed that the newly developed markers could be useful tools for efficient identification of St chromosomes in a common wheat background.


Subject(s)
Chromosomes, Plant , Disease Resistance/genetics , Genetic Markers , Poaceae/genetics , Poaceae/microbiology , Puccinia/pathogenicity , Triticum/genetics , Triticum/microbiology , Cytogenetic Analysis , Genetic Variation , Genotype
15.
Sci Rep ; 12(1): 821, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039525

ABSTRACT

Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant and susceptible Ae. tauschii accessions using RNA-sequencing. Gene ontology, analysis of pathway enrichment and transcription factors provided an apprehensible review of differentially expressed genes and highlighted biological mechanisms behind the Aegilops-P. triticina interaction. The results showed the resistant accession could uniquely recognize pathogen invasion and respond precisely via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha-linolenic acid metabolism. However, the suppression of photosynthetic pathway and external stimulus responses were observed upon rust infection in the susceptible genotype. In particular, this first report of comparative transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust and exhibits a pipeline for future wheat breeding programs.


Subject(s)
Aegilops/genetics , Aegilops/microbiology , Genetic Predisposition to Disease/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Puccinia/pathogenicity , RNA, Plant/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics , Aegilops/metabolism , Chromosomes, Plant , Disease Resistance/genetics , Host Microbial Interactions/genetics , Plant Breeding
16.
Plant Dis ; 106(1): 282-288, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34253044

ABSTRACT

Wheat stripe rust, an airborne fungal disease caused by Puccinia striiformis Westend. f. sp. tritici, is one of the most devastating diseases of wheat. Chinese wheat cultivar Xike01015 displays high levels of all-stage resistance (ASR) to the current predominant P. striiformis f. sp. tritici race CYR33. In this study, a single dominant gene, designated YrXk, was identified in Xike01015 conferring resistance to CYR33 with genetic analysis of F2 and BC1 populations from a cross of Mingxian169 (susceptible) and Xike01015. The specific length amplified fragment sequencing (SLAF-seq) strategy was used to construct a linkage map in the F2 population. Quantitative trait loci (QTL) analysis mapped YrXk to a 12.4-Mb segment on chromosome1 BS, explaining >86.96% of the phenotypic variance. Gene annotation in the QTL region identified three differential expressed candidate genes, TraesCS1B02G168600.1, TraesCS1B02G170200.1, and TraesCS1B02G172400.1. The qRT-PCR results showed that TraesCS1B02G172400.1 and TraesCS1B02G168600.1 are upregulated and that TraesCS1B02G170200.1 is slightly downregulated after inoculation with CYR33 in the seedling stage, which indicates that these genes may function in wheat resistance to stripe rust. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia/pathogenicity , Triticum , China , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology
17.
Plant Dis ; 106(2): 390-394, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34491090

ABSTRACT

Rust, putatively caused by Puccinia emaculata, is a widespread and potentially damaging disease of switchgrass, a crop produced as feedstock for livestock and bioenergy. Azoxystrobin, chlorothalonil, and myclobutanil were applied at 1-, 2-, 3-, or 4-week intervals for 12 to 14 weeks to the vegetatively propagated switchgrass cultivar Cloud Nine to assess fungicide selection and application interval for the control of rust as well as the impact of this disease on switchgrass biomass yield. Although rust severity significantly differed among study years, azoxystrobin and myclobutanil were often equally and more effective than chlorothalonil at controlling rust, with superior disease control coming at shorter application intervals compared with extended application intervals. Year, product, application interval, and product × interval significantly impacted dry biomass yield, which was greatest in 2016 and lowest in 2014. Dry biomass yield protection was significantly better with azoxystrobin and myclobutanil applications than with chlorothalonil or no fungicide. Linear regression models with the final disease rating, as well as with the area under disease progress curve in each year, were significant, but coefficients of determination were low to moderate (0.21 < R2 < 0.60), indicating that rust response and subsequent disease impact on dry biomass yield were impacted by other factors. From our models, an estimated 3 to 5% biomass decline was calculated for each 10% increment in rust-related leaf necrosis observed at the final September rating date. With rust-related leaf necrosis ≥80% by 1 September in each of 4 study years, biomass yield may be reduced by 24 to 40% if rust problems are not managed in switchgrass crops.


Subject(s)
Panicum , Plant Diseases/microbiology , Puccinia/pathogenicity , Biomass , Panicum/growth & development , Panicum/microbiology
18.
Sci Rep ; 11(1): 22923, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824302

ABSTRACT

In bread wheat, meta-QTL analysis was conducted using 353 QTLs that were available from earlier studies. When projected onto a dense consensus map comprising 76,753 markers, only 184 QTLs with the required information, could be utilized leading to identification of 61 MQTLs spread over 18 of the 21 chromosomes (barring 5D, 6D and 7D). The range for mean R2 (PVE %) was 1.9% to 48.1%, and that of CI was 0.02 to 11.47 cM; these CIs also carried 37 Yr genes. Using these MQTLs, 385 candidate genes (CGs) were also identified. Out of these CGs, 241 encoded known R proteins and 120 showed differential expression due to stripe rust infection at the seedling stage; the remaining 24 CGs were common in the sense that they encoded R proteins as well as showed differential expression. The proteins encoded by CGs carried the following widely known domains: NBS-LRR domain, WRKY domains, ankyrin repeat domains, sugar transport domains, etc. Thirteen breeders' MQTLs (PVE > 20%) including four pairs of closely linked MQTLs are recommended for use in wheat molecular breeding, for future studies to understand the molecular mechanism of stripe rust resistance and for gene cloning.


Subject(s)
Chromosomes, Plant , Disease Resistance/genetics , Genes, Plant , Genome, Plant , Plant Diseases/genetics , Plant Proteins/genetics , Quantitative Trait Loci , Triticum/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Plant Diseases/microbiology , Plant Proteins/metabolism , Puccinia/pathogenicity , Triticum/microbiology
19.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681868

ABSTRACT

Agropyron cristatum (2n = 4x = 28, PPPP) is an important wild relative of common wheat (Triticum aestivum L., 2n = 6x = 42). A previous report showed that the wheat-A. cristatum 6P translocation line WAT655 carrying A. cristatum 6PS (0.81-1.00) exhibited high resistance to prevalent physiological races of stripe rust (CYR32 and CYR33). In this study, three disease resistance-related transcripts, which were mapped to A. cristatum 6PS (0.81-1.00) through the analysis of specific molecular markers, were acquired from among A. cristatum full-length transcripts. The BC5F2 and BC5F2:3 genetic populations of the translocation line WAT655 were analyzed by using three disease resistance-related gene markers, A. cristatum P genome-specific markers, and fluorescence in situ hybridization (FISH). The results revealed that the introgression between A. cristatum P genome and wheat genome was observed in progenies of the genetic populations of the translocation line WAT655 and the physical positions of the three genes were considerably adjacent on A. cristatum 6PS (0.81-1.00) according to the FISH results. Additionally, kompetitive allele-specific PCR (KASP) markers of the three genes were developed to detect and acquire 24 breeding lines selected from the progenies of the distant hybridization of wheat and A. cristatum, which showed resistance to physiological races of stripe rust (CYR32 and CYR33) and other desirable agronomic traits according to the field investigation. In conclusion, this study not only provides new insights into the introgression between A. cristatum P genome and wheat genome but also provides the desirable germplasms for breeding practice.


Subject(s)
Agropyron/genetics , Disease Resistance/genetics , Genetic Introgression/genetics , Genome, Plant , Triticum/genetics , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Chromosomes, Plant , Cytogenetic Analysis , Genetic Markers , In Situ Hybridization, Fluorescence , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology , Puccinia/pathogenicity
20.
BMC Biol ; 19(1): 203, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526021

ABSTRACT

BACKGROUND: Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive. RESULTS: We use sRNA sequencing and methylation data to gain insight into epigenetics in the dikaryotic fungus Puccinia graminis f. sp. tritici (Pgt), which causes the devastating stem rust disease on wheat. We use Hi-C data to define the Pgt centromeres and show that they are repeat-rich regions (~250 kb) that are highly diverse in sequence between haplotypes and, like in plants, are enriched for young TEs. DNA cytosine methylation is particularly active at centromeres but also associated with genome-wide control of young TE insertions. Strikingly, over 90% of Pgt sRNAs and several RNAi genes are differentially expressed during infection. Pgt induces waves of functionally diversified sRNAs during infection. The early wave sRNAs are predominantly 21 nts with a 5' uracil derived from genes. In contrast, the late wave sRNAs are mainly 22-nt sRNAs with a 5' adenine and are strongly induced from centromeric regions. TEs that overlap with late wave sRNAs are more likely to be methylated, both inside and outside the centromeres, and methylated TEs exhibit a silencing effect on nearby genes. CONCLUSIONS: We conclude that rust fungi use an epigenetic silencing pathway that might have similarity with RdDM in plants. The Pgt RNAi machinery and sRNAs are under tight temporal control throughout infection and might ensure genome stability during sporulation.


Subject(s)
Basidiomycota , DNA Methylation , Puccinia , Basidiomycota/genetics , Centromere , DNA Methylation/genetics , DNA Transposable Elements , Genomic Instability , Humans , Plant Diseases/genetics , Puccinia/pathogenicity , RNA
SELECTION OF CITATIONS
SEARCH DETAIL