Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.451
Filter
1.
Elife ; 122024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916598

ABSTRACT

Adaptive motor behavior depends on the coordinated activity of multiple neural systems distributed across the brain. While the role of sensorimotor cortex in motor learning has been well established, how higher-order brain systems interact with sensorimotor cortex to guide learning is less well understood. Using functional MRI, we examined human brain activity during a reward-based motor task where subjects learned to shape their hand trajectories through reinforcement feedback. We projected patterns of cortical and striatal functional connectivity onto a low-dimensional manifold space and examined how regions expanded and contracted along the manifold during learning. During early learning, we found that several sensorimotor areas in the dorsal attention network exhibited increased covariance with areas of the salience/ventral attention network and reduced covariance with areas of the default mode network (DMN). During late learning, these effects reversed, with sensorimotor areas now exhibiting increased covariance with DMN areas. However, areas in posteromedial cortex showed the opposite pattern across learning phases, with its connectivity suggesting a role in coordinating activity across different networks over time. Our results establish the neural changes that support reward-based motor learning and identify distinct transitions in the functional coupling of sensorimotor to transmodal cortex when adapting behavior.


Subject(s)
Learning , Magnetic Resonance Imaging , Reward , Humans , Male , Learning/physiology , Female , Adult , Young Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Brain Mapping , Motor Activity/physiology , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging
2.
Neuroreport ; 35(11): 729-733, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38829951

ABSTRACT

OBJECTIVE: Solute transport in the brain is essential for maintaining cerebral homeostasis. Recent studies have shown that neuronal activity enhances the transport of cerebrospinal fluid solutes, but its impact on interstitial solute transport has not been established. In this study, we investigated whether neuronal activity affects the transport of interstitial solutes. METHODS: Fluorescent Texas Red ovalbumin was injected intracortically into the unilateral sensorimotor area of the Sprague-Dawley rats. Regional neuronal activity around the injection site was elicited by transdermal electrical stimulation of a corresponding forelimb for 90 min ( n  = 6). The control group of rats ( n  = 6) did not receive any electrical stimulation. Subsequently, the spatial distributions of the tracer over the cortical surface and from the brain sections were imaged and compared between two groups. The ovalbumin fluorescence from the cervical lymph nodes was also compared between the groups to evaluate the effect of neuronal activity on solute clearance from the brain. RESULTS: Tracer distribution over the brain surface/sections revealed a significantly higher uptake of ovalbumin in the hemisphere ipsilateral to the injection among the stimulated animals compared to the unstimulated group. This difference, however, was not seen in the hemisphere contralateral to injection. A trace amount of ovalbumin in the lymph nodes was equivalent between the groups, which indicated a considerable time needed for interstitial solutes to be drained from the brain. CONCLUSION: The results suggest that neuronal activity enhances interstitial solute transport, calling for further examination of ultimate routes and mechanisms for brain solute clearance.


Subject(s)
Rats, Sprague-Dawley , Animals , Male , Rats , Ovalbumin , Electric Stimulation/methods , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/physiology , Biological Transport/physiology , Lymph Nodes/metabolism , Brain/metabolism , Neurons/metabolism , Xanthenes
3.
Hum Brain Mapp ; 45(8): e26723, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38864296

ABSTRACT

This study aims to investigate the structural reorganization in the sensorimotor area of the brain in patients with gliomas, distinguishing between those with impaired and unimpaired strength. Using voxel-based morphometry (VBM) and region of interest (ROI) analysis, gray matter volumes (GMV) were compared in the contralesional primary motor gyrus, primary sensory gyrus, premotor area, bilateral supplementary motor area, and medial Brodmann area 8 (BA8). The results revealed that in patients with right hemisphere gliomas, the right medial BA8 volume was significantly larger in the impaired group than in the unimpaired group, with both groups exceeding the volume in 16 healthy controls (HCs). In patients with left hemisphere gliomas, the right supplementary motor area (SMA) was more pronounced in the impaired group compared to the unimpaired group, and both groups were greater than HCs. Additionally, the volumes of the right medial BA8 in both the impaired group were greater than HCs. Contralateral expansions in the gray matter of hand- and trunk-related cortices of the premotor area, precentral gyrus, and postcentral gyrus were observed compared to HCs. Furthermore, a negative correlation was found between hand Medical Research Council (MRC) score and volumes of the contralateral SMA and bilateral medial BA8. Notably, our findings reveal consistent results across both analytical approaches in identifying significant structural reorganizations within the sensorimotor cortex. These consistent findings underscore the adaptive neuroplastic responses to glioma presence, highlighting potential areas of interest for further neurosurgical planning and rehabilitation strategies.


Subject(s)
Brain Neoplasms , Functional Laterality , Glioma , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Male , Glioma/diagnostic imaging , Glioma/pathology , Glioma/physiopathology , Female , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Brain Neoplasms/physiopathology , Adult , Middle Aged , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/pathology , Sensorimotor Cortex/physiopathology , Functional Laterality/physiology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Motor Cortex/diagnostic imaging , Motor Cortex/pathology , Motor Cortex/physiopathology , Brain Mapping , Young Adult
4.
Hum Brain Mapp ; 45(9): e26767, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38923184

ABSTRACT

Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Magnetic Resonance Imaging , Neural Networks, Computer , Neurofeedback , Sensorimotor Cortex , Humans , Electroencephalography/methods , Adult , Male , Neurofeedback/methods , Young Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Female
5.
J Neuroeng Rehabil ; 21(1): 103, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890742

ABSTRACT

Humans use their arms in complex ways that often demand two-handed coordination. Neurological conditions limit this impressive feature of the human motor system. Understanding how neuromodulatory techniques may alter neural mechanisms of bimanual coordination is a vital step towards designing efficient rehabilitation interventions. By non-invasively activating the spinal cord, transcutaneous spinal cord stimulation (tSCS) promotes recovery of motor function after spinal cord injury. A multitude of research studies have attempted to capture the underlying neural mechanisms of these effects using a variety of electrophysiological tools, but the influence of tSCS on cortical rhythms recorded via electroencephalography remains poorly understood, especially during bimanual actions. We recruited 12 neurologically intact participants to investigate the effect of cervical tSCS on sensorimotor cortical oscillations. We examined changes in the movement kinematics during the application of tSCS as well as the cortical activation level and interhemispheric connectivity during the execution of unimanual and bimanual arm reaching movements that represent activities of daily life. Behavioral assessment of the movements showed improvement of movement time and error during a bimanual common-goal movement when tSCS was delivered, but no difference was found in the performance of unimanual and bimanual dual-goal movements with the application of tSCS. In the alpha band, spectral power was modulated with tSCS in the direction of synchronization in the primary motor cortex during unimanual and bimanual dual-goal movements and in the somatosensory cortex during unimanual movements. In the beta band, tSCS significantly increased spectral power in the primary motor and somatosensory cortices during the performance of bimanual common-goal and unimanual movements. A significant increase in interhemispheric connectivity in the primary motor cortex in the alpha band was only observed during unimanual tasks in the presence of tSCS. Our observations provide, for the first time, information regarding the supra-spinal effects of tSCS as a neuromodulatory technique applied to the spinal cord during the execution of bi- and unimanual arm movements. They also corroborate the suppressive effect of tSCS at the cortical level reported in previous studies. These findings may guide the design of improved rehabilitation interventions using tSCS for the recovery of upper-limb function in the future.


Subject(s)
Psychomotor Performance , Spinal Cord Stimulation , Humans , Female , Male , Adult , Spinal Cord Stimulation/methods , Psychomotor Performance/physiology , Electroencephalography , Movement/physiology , Young Adult , Biomechanical Phenomena , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/physiopathology , Arm/physiology , Sensorimotor Cortex/physiology , Spinal Cord/physiology , Functional Laterality/physiology
6.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928431

ABSTRACT

In orbital and ground-based experiments, it has been demonstrated that ionizing radiation (IR) can stimulate the locomotor and exploratory activity of rodents, but the underlying mechanism of this phenomenon remains undisclosed. Here, we studied the effect of combined IR (0.4 Gy γ-rays and 0.14 Gy carbon-12 nuclei) on the locomotor and exploratory activity of rats, and assessed the sensorimotor cortex volume by magnetic resonance imaging-based morphometry at 1 week and 7 months post-irradiation. The sensorimotor cortex tissues were processed to determine whether the behavioral and morphologic effects were associated with changes in neurotrophin content. The irradiated rats were characterized by increased locomotor and exploratory activity, as well as novelty-seeking behavior, at 3 days post-irradiation. At the same time, only unirradiated rats experienced a significant decrease in the sensorimotor cortex volume at 7 months. While there were no significant differences at 1 week, at 7 months, the irradiated rats were characterized by higher neurotrophin-3 and neurotrophin-4 content in the sensorimotor cortex. Thus, IR prevents the age-associated decrease in the sensorimotor cortex volume, which is associated with neurotrophic and neurogenic changes. Meanwhile, IR-induced increases in locomotor activity may be the cause of the observed changes.


Subject(s)
Gamma Rays , Nerve Growth Factors , Sensorimotor Cortex , Animals , Sensorimotor Cortex/metabolism , Sensorimotor Cortex/radiation effects , Gamma Rays/adverse effects , Rats , Male , Nerve Growth Factors/metabolism , Radiation, Ionizing , Neurotrophin 3/metabolism , Aging , Locomotion/radiation effects , Magnetic Resonance Imaging
7.
Neurosci Biobehav Rev ; 162: 105712, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733896

ABSTRACT

Substance use disorders (SUDs) are severe psychiatric illnesses. Seed region and independent component analyses are currently the dominant connectivity measures but carry the risk of false negatives due to selection. They can be complemented by a data-driven and whole-brain usage of voxel-wise intrinsic measures (VIMs). We meta-analytically integrated VIMs, namely regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), voxel-mirrored homotopy connectivity (VMHC) and degree centrality (DC) across different SUDs using the Activation Likelihood Estimation (ALE) algorithm, functionally decoded emerging clusters, and analysed their connectivity profiles. Our systematic search identified 51 studies including 1439 SUD participants. Although no overall convergent pattern of alterations across VIMs in SUDs was found, sensitivity analyses demonstrated two ALE-derived clusters of increased ReHo and ALFF in SUDs, which peaked in the left pre- and postcentral cortices. Subsequent analyses showed their involvement in action execution, somesthesis, finger tapping and vibrotactile monitoring/discrimination. Their numerous clinical correlates across included studies highlight the under-discussed role of sensorimotor cortices in SUD, urging a more attentive exploration of their clinical significance.


Subject(s)
Sensorimotor Cortex , Substance-Related Disorders , Humans , Substance-Related Disorders/physiopathology , Substance-Related Disorders/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Sensorimotor Cortex/physiopathology , Magnetic Resonance Imaging , Brain Mapping
8.
Clin Neurophysiol ; 163: 244-254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820994

ABSTRACT

OBJECTIVE: Diseases affecting sensorimotor function impair physical independence. Reliable functional clinical biomarkers allowing early diagnosis or targeting treatment and rehabilitation could reduce this burden. Magnetoencephalography (MEG) non-invasively measures brain rhythms such as the somatomotor 'rolandic' rhythm which shows intermittent high-amplitude beta (14-30 Hz) 'events' that predict behavior across tasks and species and are altered by sensorimotor neurological diseases. METHODS: We assessed test-retest stability, a prerequisite for biomarkers, of spontaneous sensorimotor aperiodic (1/f) signal and beta events in 50 healthy human controls across two MEG sessions using the intraclass correlation coefficient (ICC). Beta events were determined using an amplitude-thresholding approach on a narrow-band filtered amplitude envelope obtained using Morlet wavelet decomposition. RESULTS: Resting sensorimotor characteristics showed good to excellent test-retest stability. Aperiodic component (ICC 0.77-0.88) and beta event amplitude (ICC 0.74-0.82) were very stable, whereas beta event duration was more variable (ICC 0.55-0.7). 2-3 minute recordings were sufficient to obtain stable results. Analysis automatization was successful in 86%. CONCLUSIONS: Sensorimotor beta phenotype is a stable feature of an individual's resting brain activity even for short recordings easily measured in patients. SIGNIFICANCE: Spontaneous sensorimotor beta phenotype has potential as a clinical biomarker of sensorimotor system integrity.


Subject(s)
Beta Rhythm , Magnetoencephalography , Humans , Male , Female , Adult , Magnetoencephalography/methods , Magnetoencephalography/standards , Beta Rhythm/physiology , Reproducibility of Results , Sensorimotor Cortex/physiology , Young Adult , Rest/physiology , Middle Aged
9.
Zhen Ci Yan Jiu ; 49(5): 480-486, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764119

ABSTRACT

OBJECTIVES: To observe the activation state and neuronal types of somatosensory cortex and the primary motor cortex induced by electroacupuncture (EA) stimulation of "Sibai" (ST2) and "Quanliao" (SI18) acupoints in mice. METHODS: Male C57BL/6J mice were randomly divided into blank control and EA groups, with 6 mice in each group. Rats of the EA group received EA stimulation (2 Hz, 0.6 mA) at ST2 and SI18 for 30 minutes. Samples were collected after EA intervention, and immunofluorescence staining was performed to quantify the expression of the c-Fos gene (proportion of c-Fos positive cells) in the somatosensory cortex and primary motor cortex. The co-labelled cells of calcium/calmodulin-dependent protein kinase Ⅱ (CaMKⅡ) and gamma-aminobutyric acid (GABA) in the somatosensory cortex and primary motor cortex were observed and counted by using microscope after immunofluorescence staining. Another 10 mice were used to detect the calcium activity of excitatory neurons in the somatosensory cortex and primary motor cortex by fiber photometry. RESULTS: In comparison with the blank control group, the number of c-Fos positive cells, and the proportion of c-Fos and CaMKⅡ co-labelled cells in both the somatosensory cortex and primary motor cortex were significantly increased after EA stimulation (P<0.05). No significant changes were found in the proportion of c-Fos and GABA co-labeled cells in both the somatosensory cortex and primary motor cortex after EA. Results of fiber optic calcium imaging technology showed that the spontaneous calcium activity of excitatory neurons in both somatosensory cortex and primary motor cortex were obviously increased during EA compared with that before EA (P<0.01), and strikingly reduced after cessation of EA compared with that during EA (P<0.05). CONCLUSIONS: Under physiological conditions, EA of ST2 and SI18 can effectively activate excitatory neurons in the somatosensory cortex and primary motor cortex.


Subject(s)
Acupuncture Points , Electroacupuncture , Mice, Inbred C57BL , Neurons , Animals , Male , Mice , Neurons/metabolism , Sensorimotor Cortex/metabolism , Humans , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Motor Cortex/metabolism , Somatosensory Cortex/metabolism
10.
Sci Rep ; 14(1): 10788, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734783

ABSTRACT

Prior research has shown that the sensorimotor cortical oscillations are uncharacteristic in persons with cerebral palsy (CP); however, it is unknown if these altered cortical oscillations have an impact on adaptive sensorimotor control. This investigation evaluated the cortical dynamics when the motor action needs to be changed "on-the-fly". Adults with CP and neurotypical controls completed a sensorimotor task that required either proactive or reactive control while undergoing magnetoencephalography (MEG). When compared with the controls, the adults with CP had a weaker beta (18-24 Hz) event-related desynchronization (ERD), post-movement beta rebound (PMBR, 16-20 Hz) and theta (4-6 Hz) event-related synchronization (ERS) in the sensorimotor cortices. In agreement with normative work, the controls exhibited differences in the strength of the sensorimotor gamma (66-84 Hz) ERS during proactive compared to reactive trials, but similar condition-wise changes were not seen in adults with CP. Lastly, the adults with CP who had a stronger theta ERS tended to have better hand dexterity, as indicated by the Box and Blocks Test and Purdue Pegboard Test. These results may suggest that alterations in the theta and gamma cortical oscillations play a role in the altered hand dexterity and uncharacteristic adaptive sensorimotor control noted in adults with CP.


Subject(s)
Cerebral Palsy , Magnetoencephalography , Sensorimotor Cortex , Humans , Adult , Male , Female , Cerebral Palsy/physiopathology , Sensorimotor Cortex/physiopathology , Sensorimotor Cortex/physiology , Young Adult , Psychomotor Performance/physiology , Adaptation, Physiological , Case-Control Studies
11.
Sci Rep ; 14(1): 11933, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789576

ABSTRACT

It is hypothesized that disparate brain regions interact via synchronous activity to control behavior. The nature of these interconnected ensembles remains an area of active investigation, and particularly the role of high frequency synchronous activity in simplistic behavior is not well known. Using intracranial electroencephalography, we explored the spectral dynamics and network connectivity of sensorimotor cortical activity during a simple motor task in seven epilepsy patients. Confirming prior work, we see a "spectral tilt" (increased high-frequency (HF, 70-100 Hz) and decreased low-frequency (LF, 3-33 Hz) broadband oscillatory activity) in motor regions during movement compared to rest, as well as an increase in LF synchrony between these regions using time-resolved phase-locking. We then explored this phenomenon in high frequency and found a robust but opposite effect, where time-resolved HF broadband phase-locking significantly decreased during movement. This "connectivity tilt" (increased LF synchrony and decreased HF synchrony) displayed a graded anatomical dependency, with the most robust pattern occurring in primary sensorimotor cortical interactions and less robust pattern occurring in associative cortical interactions. Connectivity in theta (3-7 Hz) and high beta (23-27 Hz) range had the most prominent low frequency contribution during movement, with theta synchrony building gradually while high beta having the most prominent effect immediately following the cue. There was a relatively sharp, opposite transition point in both the spectral and connectivity tilt at approximately 35 Hz. These findings support the hypothesis that task-relevant high-frequency spectral activity is stochastic and that the decrease in high-frequency synchrony may facilitate enhanced low frequency phase coupling and interregional communication. Thus, the "connectivity tilt" may characterize behaviorally meaningful cortical interactions.


Subject(s)
Movement , Sensorimotor Cortex , Humans , Male , Female , Adult , Sensorimotor Cortex/physiology , Sensorimotor Cortex/physiopathology , Movement/physiology , Young Adult , Electroencephalography , Nerve Net/physiology , Epilepsy/physiopathology
12.
PLoS One ; 19(4): e0300575, 2024.
Article in English | MEDLINE | ID: mdl-38578743

ABSTRACT

Human cingulate sulcus visual area (CSv) was first identified as an area that responds selectively to visual stimulation indicative of self-motion. It was later shown that the area is also sensitive to vestibular stimulation as well as to bodily motion compatible with locomotion. Understanding the anatomical connections of CSv will shed light on how CSv interacts with other parts of the brain to perform information processing related to self-motion and navigation. A previous neuroimaging study (Smith et al. 2018, Cerebral Cortex, 28, 3685-3596) used diffusion-weighted magnetic resonance imaging (dMRI) to examine the structural connectivity of CSv, and demonstrated connections between CSv and the motor and sensorimotor areas in the anterior and posterior cingulate sulcus. The present study aimed to complement this work by investigating the relationship between CSv and adjacent major white matter tracts, and to map CSv's structural connectivity onto known white matter tracts. By re-analysing the dataset from Smith et al. (2018), we identified bundles of fibres (i.e. streamlines) from the whole-brain tractography that terminate near CSv. We then assessed to which white matter tracts those streamlines may belong based on previously established anatomical prescriptions. We found that a significant number of CSv streamlines can be categorised as part of the dorsalmost branch of the superior longitudinal fasciculus (SLF I) and the cingulum. Given current thinking about the functions of these white matter tracts, our results support the proposition that CSv provides an interface between sensory and motor systems in the context of self-motion.


Subject(s)
Sensorimotor Cortex , White Matter , Humans , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiology , White Matter/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Brain Mapping
13.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679481

ABSTRACT

Increasingly, in the field of communication, education, and business, people are switching to video interaction, and interlocutors frequently complain that the perception of nonverbal information and concentration suffer. We investigated this issue by analyzing electroencephalogram (EEG) oscillations of the sensorimotor (mu rhythm) and visual (alpha rhythm) cortex of the brain in an experiment with action observation live and on video. The mu rhythm reflects the activity of the mirror neuron system, and the occipital alpha rhythm shows the level of visual attention. We used 32-channel EEG recorded during live and video action observation in 83 healthy volunteers. The ICA method was used for selecting the mu- and alpha-components; the Fourier Transform was used to calculate the suppression index relative to the baseline (stationary demonstrator) of the rhythms. The main range of the mu rhythm was indeed sensitive to social movement and was highly dependent on the conditions of interaction-live or video. The upper mu-range appeared to be less sensitive to the conditions, but more sensitive to different movements. The alpha rhythm did not depend on the type of movement; however, a live performance initially caused a stronger concentration of visual attention. Thus, subtle social and nonverbal perceptions may suffer in remote video interactions.


Subject(s)
Electroencephalography , Humans , Male , Female , Adult , Young Adult , Electroencephalography/methods , Attention/physiology , Visual Cortex/physiology , Alpha Rhythm/physiology , Sensorimotor Cortex/physiology , Visual Perception/physiology , Photic Stimulation/methods
14.
PLoS Comput Biol ; 20(4): e1011562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38630803

ABSTRACT

The role of the cortex in shaping automatic whole-body motor behaviors such as walking and balance is poorly understood. Gait and balance are typically mediated through subcortical circuits, with the cortex becoming engaged as needed on an individual basis by task difficulty and complexity. However, we lack a mechanistic understanding of how increased cortical contribution to whole-body movements shapes motor output. Here we use reactive balance recovery as a paradigm to identify relationships between hierarchical control mechanisms and their engagement across balance tasks of increasing difficulty in young adults. We hypothesize that parallel sensorimotor feedback loops engaging subcortical and cortical circuits contribute to balance-correcting muscle activity, and that the involvement of cortical circuits increases with balance challenge. We decomposed balance-correcting muscle activity based on hypothesized subcortically- and cortically-mediated feedback components driven by similar sensory information, but with different loop delays. The initial balance-correcting muscle activity was engaged at all levels of balance difficulty. Its onset latency was consistent with subcortical sensorimotor loops observed in the lower limb. An even later, presumed, cortically-mediated burst of muscle activity became additionally engaged as balance task difficulty increased, at latencies consistent with longer transcortical sensorimotor loops. We further demonstrate that evoked cortical activity in central midline areas measured using electroencephalography (EEG) can be explained by a similar sensory transformation as muscle activity but at a delay consistent with its role in a transcortical loop driving later cortical contributions to balance-correcting muscle activity. These results demonstrate that a neuromechanical model of muscle activity can be used to infer cortical contributions to muscle activity without recording brain activity. Our model may provide a useful framework for evaluating changes in cortical contributions to balance that are associated with falls in older adults and in neurological disorders such as Parkinson's disease.


Subject(s)
Electroencephalography , Feedback, Sensory , Postural Balance , Humans , Postural Balance/physiology , Feedback, Sensory/physiology , Male , Young Adult , Adult , Female , Muscle, Skeletal/physiology , Sensorimotor Cortex/physiology , Cerebral Cortex/physiology , Computational Biology , Electromyography
15.
Neuron ; 112(9): 1384-1386, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38614104

ABSTRACT

In a recent issue of Cell, Vargas and colleagues1 demonstrate that task-driven neural network models are superior at predicting proprioceptive activity in the primate cuneate nucleus and sensorimotor cortex compared with other models. This provides valuable insights for better understanding the proprioceptive pathway.


Subject(s)
Neural Networks, Computer , Proprioception , Proprioception/physiology , Animals , Humans , Models, Neurological , Sensorimotor Cortex/physiology
16.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38652551

ABSTRACT

Acupuncture, a traditional Chinese therapy, is gaining attention for its impact on the brain. While existing electroencephalogram and functional magnetic resonance image research has made significant contributions, this paper utilizes stereo-electroencephalography data for a comprehensive exploration of neurophysiological effects. Employing a multi-scale approach, channel-level analysis reveals notable $\delta $-band activity changes during acupuncture. At the brain region level, acupuncture modulated connectivity between the paracentral lobule and the precentral gyrus. Whole-brain analysis indicates acupuncture's influence on network organization, and enhancing $E_{glob}$ and increased interaction between the motor and sensory cortex. Brain functional reorganization is an important basis for functional recovery or compensation after central nervous system injury. The use of acupuncture to stimulate peripheral nerve trunks, muscle motor points, acupoints, etc., in clinical practice may contribute to the reorganization of brain function. This multi-scale perspective provides diverse insights into acupuncture's effects. Remarkably, this paper pioneers the introduction of stereo-electroencephalography data, advancing our understanding of acupuncture's mechanisms and potential therapeutic benefits in clinical settings.


Subject(s)
Acupuncture Therapy , Electroencephalography , Motor Cortex , Humans , Acupuncture Therapy/methods , Electroencephalography/methods , Motor Cortex/physiology , Male , Adult , Female , Somatosensory Cortex/physiology , Young Adult , Sensorimotor Cortex/physiology , Brain Mapping/methods
17.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664387

ABSTRACT

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Subject(s)
Connectome , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Adolescent , Female , Male , Young Adult , Child , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Child, Preschool , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/growth & development
18.
Sci Rep ; 14(1): 7294, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538663

ABSTRACT

Stress-related overeating can lead to excessive weight gain, increasing the risk of metabolic and cardiovascular disease. Mindfulness meditation has been demonstrated to reduce stress and increase interoceptive awareness and could, therefore, be an effective intervention for stress-related overeating behavior. To investigate the effects of mindfulness meditation on stress-eating behavior, meditation-naïve individuals with a tendency to stress-eat (N = 66) participated in either a 31-day, web-based mindfulness meditation training or a health training condition. Behavioral and resting-state fMRI data were acquired before and after the intervention. Mindfulness meditation training, in comparison to health training, was found to significantly increase mindfulness while simultaneously reducing stress- and emotional-eating tendencies as well as food cravings. These behavioral results were accompanied by functional connectivity changes between the hypothalamus, reward regions, and several areas of the default mode network in addition to changes observed between the insula and somatosensory areas. Additional changes between seed regions (i.e., hypothalamus and insula) and brain areas attributed to emotion regulation, awareness, attention, and sensory integration were observed. Notably, these changes in functional connectivity correlated with behavioral changes, thereby providing insight into the underlying neural mechanisms of the effects of mindfulness on stress-eating.Clinical trial on the ISRCTN registry: trial ID ISRCTN12901054.


Subject(s)
Meditation , Mindfulness , Sensorimotor Cortex , Humans , Attention , Hyperphagia , Magnetic Resonance Imaging , Meditation/psychology , Mindfulness/methods
19.
J Neural Eng ; 21(2)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537271

ABSTRACT

Objective.Neuromuscular electrical stimulation (NMES) is widely used for motor function rehabilitation in stroke survivors. Compared with the conventional motor point (MP) stimulation, the stimulation at the proximal segment of the peripheral nerve (PN) bundles has been demonstrated to have multiple advantages. However, it is not known yet whether the PN stimulation can increase the cortical activation level, which is crucial for motor function rehabilitation.Approach.The current stimuli were delivered transcutaneously at the muscle belly of the finger flexors and the proximal segment of the median and ulnar nerves, respectively for the MP and PN stimulation. The stimulation intensity was determined to elicit the same contraction levels between the two stimulation methods in 18 healthy individuals and a stroke patient. The functional near-infrared spectroscopy and the electromyogram were recorded to compare the activation pattern of the sensorimotor regions and the target muscles.Main Results.For the healthy subjects, the PN stimulation induced significantly increased concentration of the oxygenated hemoglobin in the contralateral sensorimotor areas, and enhanced the functional connectivity between brain regions compared with the MP stimulation. Meanwhile, the compound action potentials had a smaller amplitude and the H-reflex became stronger under the PN stimulation, indicating that more sensory axons were activated in the PN stimulation. For the stroke patient, the PN stimulation can elicit finger forces and induce activation of both the contralateral and ipsilateral motor cortex.Conclusions. Compared with the MP stimulation, the PN stimulation can induce more cortical activation in the contralateral sensorimotor areas possibly via involving more activities in the central pathway.Significance.This study demonstrated the potential of the PN stimulation to facilitate functional recovery via increasing the cortical activation level, which may help to improve the outcome of the NMES-based rehabilitation for motor function recovery after stroke.


Subject(s)
Sensorimotor Cortex , Stroke , Humans , Muscle, Skeletal/physiology , Electric Stimulation/methods , Electromyography
20.
Ann Neurol ; 96(1): 187-193, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506405

ABSTRACT

Using 6-minute free-running intracranial-electroencephalogram (icEEG) during sleep, an optimized multilayer perceptron (MLP) neural network accurately maps the sensorimotor cortex (SM) and identifies the anterior lip of the central sulcus (CS) in intractable epilepsy patients. We calculated 6 performance metrics to evaluate the MLP's efficacy: accuracy, area under the curve (AUC), recall, precision, F1-scores, and specificity. Each layer had 4 neurons with hyperbolic TanH activation function and 4 with Gaussian distribution function. Conventional 10-fold cross-validation was used. Feature extension (ε) and weighted imbalanced data (w) improved MLP performance. ANN NEUROL 2024;96:187-193.


Subject(s)
Brain Mapping , Electrocorticography , Sensorimotor Cortex , Humans , Sensorimotor Cortex/physiology , Electrocorticography/methods , Male , Brain Mapping/methods , Female , Adult , Neural Networks, Computer , Drug Resistant Epilepsy/physiopathology , Young Adult , Electroencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL