Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.329
Filter
1.
Oncotarget ; 15: 535-540, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39102216

ABSTRACT

WNT signaling regulates osteosarcoma proliferation. However, there is controversy in the field of osteosarcoma as to whether WNT signaling is pro- or anti-tumorigenic. WNT-targeting therapeutics, both activators and inhibitors, are compared. WNT5B, a ß-catenin-independent ligand, and WNT10B, a ß-catenin-dependent WNT ligand, are each expressed in osteosarcomas, but they are not expressed in the same tumors. Furthermore, WNT10B and WNT5B regulate different histological subtypes of osteosarcomas. Using WNT signaling modulators as therapeutics may depend on the WNT ligand and/or the activated signaling pathway.


Subject(s)
Bone Neoplasms , Osteosarcoma , Wnt Proteins , Wnt Signaling Pathway , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Humans , Wnt Proteins/metabolism , Wnt Proteins/antagonists & inhibitors , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Animals , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic
2.
Int J Nanomedicine ; 19: 7731-7750, 2024.
Article in English | MEDLINE | ID: mdl-39099787

ABSTRACT

Purpose: Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods: To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1ß, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/ß-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results: The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion: In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.


Subject(s)
Inflammation , Lignin , Nanoparticles , Zebrafish , Animals , Lignin/chemistry , Lignin/pharmacology , Nanoparticles/chemistry , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Disease Models, Animal , Cytokines/metabolism , Cytokines/genetics , Embryo, Nonmammalian/drug effects , Pseudomonas aeruginosa/drug effects , Wnt Signaling Pathway/drug effects
3.
Cells ; 13(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39120298

ABSTRACT

The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.


Subject(s)
Axons , Cell Polarity , Wnt-5a Protein , Animals , Wnt-5a Protein/metabolism , Cell Polarity/drug effects , Axons/metabolism , Axons/drug effects , Mice , Wnt Signaling Pathway/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neuronal Outgrowth/drug effects , Neurons/metabolism , Neurons/cytology , Wnt3A Protein/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics
4.
Invest Ophthalmol Vis Sci ; 65(10): 3, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087933

ABSTRACT

Purpose: Primary open-angle glaucoma (POAG) is a leading cause of blindness, and its primary risk factor is elevated intraocular pressure (IOP) due to pathologic changes in the trabecular meshwork (TM). We previously showed that there is a cross-inhibition between TGFß and Wnt signaling pathways in the TM. In this study, we determined if activation of the Wnt signaling pathway using small-molecule Wnt activators can inhibit TGFß2-induced TM changes and ocular hypertension (OHT). Methods: Primary human TM (pHTM) cells and transduced SBE-GTM3 cells were treated with or without Wnt and/or TGFß signaling activators and used for luciferase assays; for the extraction of whole-cell lysate, conditioned medium, cytosolic proteins, and nuclear proteins for Western immunoblotting (WB); or for immunofluorescent staining. Human donor eyes were perfusion cultured to study the effect of Wnt activators on IOP. Results: We found that the small-molecule Wnt activators (GSK3ß inhibitors) (BIO, SB216763, and CHIR99021) activated canonical Wnt signaling in pHTM cells without toxicity at tested concentrations. This activation inhibited TGFß signaling as well as TGFß2-induced extracellular matrix deposition and formation of cross-linked actin networks in pHTM cells or SBE-GTM3 cells. We also observed nuclear translocation of both Smad4 and ß-catenin in pHTM cells, which suggested that the cross-inhibition between the TGFß and Wnt signaling pathways may occur in the nucleus. Using our ex vivo model, we found that CHIR99021 inhibited TGFß2-induced OHT in perfusion-cultured human eyes. Conclusions: Our results showed that small-molecule Wnt activators have the potential for treating TGFß signaling-induced OHT in patients with POAG.


Subject(s)
Glaucoma, Open-Angle , Glycogen Synthase Kinase 3 beta , Intraocular Pressure , Trabecular Meshwork , Humans , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Intraocular Pressure/physiology , Intraocular Pressure/drug effects , Glaucoma, Open-Angle/metabolism , Glaucoma, Open-Angle/drug therapy , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Blotting, Western , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , Ocular Hypertension/metabolism , Ocular Hypertension/drug therapy , Signal Transduction , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta2/pharmacology
5.
Stem Cell Res Ther ; 15(1): 247, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113140

ABSTRACT

BACKGROUND: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS: The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. ß-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS: NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted ß-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce ß-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS: NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.


Subject(s)
Cell Differentiation , Hydrogen Peroxide , Osteogenesis , Oxidative Stress , Periodontal Ligament , Stem Cells , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Periodontal Ligament/drug effects , Humans , Oxidative Stress/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Osteogenesis/drug effects , Cell Differentiation/drug effects , beta Catenin/metabolism , Cell Survival/drug effects , Wnt Signaling Pathway/drug effects , MAP Kinase Signaling System/drug effects , Cells, Cultured , Reactive Oxygen Species/metabolism
6.
Cell Death Dis ; 15(8): 583, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122708

ABSTRACT

In advanced hepatocellular carcinoma (HCC), RNA helicase DDX5 regulates the Wnt/ß-catenin-ferroptosis axis, influencing the efficacy of the multi-tyrosine kinase inhibitor (mTKI) sorafenib. DDX5 inhibits Wnt/ß-catenin signaling, preventing sorafenib-induced ferroptosis escape. Sorafenib/mTKIs reduce DDX5 expression, correlating with poor patient survival post-sorafenib treatment. Notably, DDX5-knockout in HCC cells activates Wnt/ß-catenin signaling persistently. Herein, we investigate the mechanistic impact of Wnt/ß-catenin activation resulting from DDX5 downregulation in the progression and treatment of HCC. RNAseq analyses identified shared genes repressed by DDX5 and upregulated by sorafenib, including Wnt signaling genes, NF-κB-inducing kinase (NIK) essential for non-canonical NF-κB (p52/RelB) activation, and cytoprotective transcription factor NRF2. We demonstrate, Wnt/ß-catenin activation induced NIK transcription, leading to non-canonical NF-κB activation, which subsequently mediated NRF2 transcription. Additionally, DDX5 deficiency extended NRF2 protein half-life by inactivating KEAP1 through p62/SQSTM1 stabilization. In a preclinical HCC mouse model, NRF2 knockdown or DDX5 overexpression restricted tumor growth upon sorafenib treatment, via induction of ferroptosis. Importantly, DDX5-knockout HCC cells exhibited elevated expression of Wnt signaling genes, NIK, p52/RelB, and NRF2-regulated genes, regardless of sorafenib treatment. Transcriptomic analyses of HCCs from TCGA and the Stelic Animal Model (STAM) of non-alcoholic steatohepatitis revealed elevated expression of these interconnected pathways in the context of DDX5 downregulation. In conclusion, DDX5 deficiency triggers Wnt/ß-catenin signaling, promoting p52/RelB and NRF2 activation, thereby enabling ferroptosis evasion upon sorafenib treatment. Similarly, independent of sorafenib, DDX5 deficiency in liver tumors enhances activation and gene expression of these interconnected pathways, underscoring the clinical relevance of DDX5 deficiency in HCC progression and therapeutic response.


Subject(s)
Carcinoma, Hepatocellular , DEAD-box RNA Helicases , Disease Progression , Liver Neoplasms , NF-E2-Related Factor 2 , NF-kappa B , Sorafenib , Sorafenib/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Humans , Mice , NF-kappa B/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Wnt Signaling Pathway/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics
7.
Sci Rep ; 14(1): 19664, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39179606

ABSTRACT

Breast cancer is a prevalent malignancy affecting women globally, necessitating effective treatment strategies. This study explores the potential of ergosterol, a bioactive compound found in edible mushrooms, as a candidate for breast cancer treatment. Breast cancer cell lines (MCF-7 and MDA-MB-231) were treated with ergosterol, revealing its ability to inhibit cell viability, induce cell cycle arrest, and suppress spheroid formation. Mechanistically, ergosterol demonstrated significant inhibitory effects on the Wnt/beta-catenin signaling pathway, a critical regulator of cancer progression, by attenuating beta-catenin translocation in the nucleus. This suppression was attributed to the inhibition of AKT/GSK-3beta phosphorylation, leading to decreased beta-catenin stability and activity. Additionally, ergosterol treatment impacted protein synthesis and ubiquitination, potentially contributing to its anti-cancer effects. Moreover, the study revealed alterations in metabolic pathways upon ergosterol treatment, indicating its influence on metabolic processes critical for cancer development. This research sheds light on the multifaceted mechanisms through which ergosterol exerts anti-tumor effects, mainly focusing on Wnt/beta-catenin pathway modulation and metabolic pathway disruption. These findings provide valuable insights into the potential of ergosterol as a therapeutic candidate for breast cancer treatment, warranting further investigation and clinical application.


Subject(s)
Breast Neoplasms , Cell Proliferation , Ergosterol , Glycogen Synthase Kinase 3 beta , Proto-Oncogene Proteins c-akt , beta Catenin , Ergosterol/pharmacology , Humans , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Cell Proliferation/drug effects , Cell Line, Tumor , MCF-7 Cells , Wnt Signaling Pathway/drug effects , Cell Survival/drug effects , Phosphorylation/drug effects
8.
World J Gastroenterol ; 30(29): 3511-3533, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39156500

ABSTRACT

BACKGROUND: Calculus bovis (CB), used in traditional Chinese medicine, exhibits anti-tumor effects in various cancer models. It also constitutes an integral component of a compound formulation known as Pien Tze Huang, which is indicated for the treatment of liver cancer. However, its impact on the liver cancer tumor microenvironment, particularly on tumor-associated macrophages (TAMs), is not well understood. AIM: To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/ß-catenin pathway modulation. METHODS: This study identified the active components of CB using UPLC-Q-TOF-MS, evaluated its anti-neoplastic effects in a nude mouse model, and elucidated the underlying mechanisms via network pharmacology, transcriptomics, and molecular docking. In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs, and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. RESULTS: This study identified 22 active components in CB, 11 of which were detected in the bloodstream. Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth. An integrated approach employing network pharmacology, transcriptomics, and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization. In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/ß-catenin pathway activation. The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001, confirming its pathway specificity. CONCLUSION: This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/ß-catenin pathway, contributing to the suppression of liver cancer growth.


Subject(s)
Liver Neoplasms , Mice, Nude , Molecular Docking Simulation , Tumor Microenvironment , Tumor-Associated Macrophages , Wnt Signaling Pathway , Wnt Signaling Pathway/drug effects , Animals , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Humans , Mice , Hep G2 Cells , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Cell Proliferation/drug effects , Mice, Inbred BALB C , Male , Network Pharmacology , beta Catenin/metabolism , Medicine, Chinese Traditional/methods
9.
Biochem Pharmacol ; 227: 116463, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39102994

ABSTRACT

Gastrointestinal cancers (GICs) are highly prevalent cancers that threaten human health worldwide. The Wnt/ß-catenin signaling pathway has been reported to play a pivotal role in the carcinogenesis of GICs. Numerous interventions targeting the Wnt/ß-catenin signaling in GICs are currently being tested in clinical trials with promising results. Unfortunately, there are no clinically approved drugs that effectively target this pathway. This comprehensive review aims to evaluate the impact of clinical therapies targeting the Wnt/ß-catenin signaling pathway in GICs. By integrating data from bioinformatics databases and recent literature from the past five years, we examine the heterogeneous expression and regulatory mechanisms of Wnt/ß-catenin pathway genes and proteins in GICs. Specifically, we focus on expression patterns, mutation frequencies, and clinical prognoses to understand their implications for treatment strategies. Additionally, we discuss recent clinical trial efforts targeting this pathway. Understanding the inhibitors currently under clinical investigation may help optimize foundational research and clinical strategies. We hope that elucidating the current status of precision therapeutic stratification for patients targeting the Wnt/ß-catenin pathway will guide future innovations in precision medicine for GICs.


Subject(s)
Antineoplastic Agents , Gastrointestinal Neoplasms , Wnt Signaling Pathway , Humans , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/physiology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , beta Catenin/metabolism , beta Catenin/antagonists & inhibitors , beta Catenin/genetics , Molecular Targeted Therapy/methods
10.
FASEB J ; 38(16): e70002, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39162680

ABSTRACT

Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer. As a glycoside derivative of apigenin, cosmosiin is characterized by low toxicity, high water solubility, and wide distribution in nature. Additionally, cosmosiin has been shown to perform anti-tumor effects in cervical cancer, hepatocellular carcinoma and melanoma. However, its pharmacological effects on breast cancer and its mechanisms are still unknown. In our study, the anti-breast cancer effect and mechanism of cosmosiin were investigated by using breast cancer models in vivo and in vitro. The results showed that cosmosiin inhibited the proliferation, migration, and adhesion of breast cancer cells in vitro and suppressed the growth of tumor in vivo through binding with AhR and inhibiting it, thus regulating the downstream CYP1A1/AMPK/mTOR and PPARγ/Wnt/ß-catenin signaling pathways. Collectively, our findings have made contribution to the development of novel drugs against breast cancer by targeting AhR and provided a new direction for the research in the field of anti-breast cancer therapy.


Subject(s)
Breast Neoplasms , Cell Proliferation , Cytochrome P-450 CYP1A1 , PPAR gamma , Receptors, Aryl Hydrocarbon , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , PPAR gamma/metabolism , Animals , Receptors, Aryl Hydrocarbon/metabolism , Mice , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cell Proliferation/drug effects , Mice, Nude , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C , Cell Movement/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/drug effects
11.
J Med Chem ; 67(16): 13778-13787, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39134504

ABSTRACT

Metal-based chemoimmunotherapy has recently garnered significant attention for its capacity to stimulate tumor-specific immunity beyond direct cytotoxic effects. Such effects are usually caused by ICD via the activation of DAMP signals. However, metal complexes that can elicit antitumor immune responses other than ICD have not yet been described. Herein, we report that a rhodium complex (Rh-1) triggers potent antitumor immune responses by downregulating Wnt/ß-catenin signaling with subsequent activation of T lymphocyte infiltration to the tumor site. The results of mechanistic experiments suggest that ROS accumulation following Rh-1 treatment is a critical trigger of a decrease in ß-catenin and enhanced secretion of CCL4, a key mediator of T cell infiltration. Through these properties, Rh-1 exerts a synergistic effect in combination with PD-1 inhibitors against tumor growth in vivo. Taken together, our work describes a promising metal-based antitumor agent with a noncanonical mode of action to sensitize tumor tissues to ICB therapy.


Subject(s)
Antineoplastic Agents , Rhodium , Wnt Signaling Pathway , Rhodium/chemistry , Rhodium/pharmacology , Animals , Wnt Signaling Pathway/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Humans , Mice , beta Catenin/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL
12.
Life Sci ; 354: 122955, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39122109

ABSTRACT

AIMS: Losartan potassium-laden pegylated nanocubic vesicles (LP-NCVs-PEG) have an intriguing kidney-targeted nanoplatform for acute renal injury via blocking apoptosis and activating wnt/ß-catenin pathway. MAIN METHODS: Utilizing a thin-film hydration methodology established on 42 full factorial design to produce LP loaded nanocubic formulations (LP-NCVs) which composed mainly from L-α-phosphatidylcholine and poloxamer. The optimization process was designed to select the formulation with maximum entrapment efficiency (EE %), maximum in-vitro drug release (Q8h), and minimum vesicle size (VS). The optimum formulation was then pegylated to obtain LP-NCVs-PEG formulation that shields NCVs from the harsh ecosystem of the stomach, improves their oral drug delivery performance and targets the proximal renal tubules with no systemic toxicity. Male albino rats were injected with Cisplatin (6 mg/kg, i.p.) alone or with LP-formulations (5 mg/kg/day). Kidney injury markers, inflammatory markers, apoptotic markers. Besides renal tissue expression of Wnt, ß-Catenin, GSK-3ß, renal RNA gene expression of TCF-4, LEF-1 and histopathology were also analyzed to display pharmacological study. KEY FINDINGS: The pharmacokinetics studies demonstrated that LP-NCVs-PEG boosted LP bioavailability approximately 3.61 times compared to LP oral solution. Besides LP-NCVs-PEG may have an intriguing kidney-targeted nanoplatform for acute renal injury via decreased renal toxicity markers, renal expression of LEF-1, GSK3-ß, caspase, TNF-α, NF-κB and TUNEL expression. Alternatively, increased renal tissue level of Bcl-2, wnt, ß-catenin and TCF-4. SIGNIFICANCE: LP-NCVs-PEG improved LP pharmacokinetics targeting the kidney and improved injury by activating wnt/ß-catenin/TCF-4 pathway, blocking apoptosis, inflammation and renal toxicity markers suggesting it might be successful nephroprotective adjuvant therapy.


Subject(s)
Acute Kidney Injury , Apoptosis , Cisplatin , Losartan , Polyethylene Glycols , Wnt Signaling Pathway , Animals , Male , Rats , Apoptosis/drug effects , Wnt Signaling Pathway/drug effects , Polyethylene Glycols/chemistry , Acute Kidney Injury/drug therapy , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/pathology , Losartan/pharmacology , beta Catenin/metabolism , Nanoparticles/chemistry , Transcription Factor 4/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antineoplastic Agents/pharmacology , Rats, Wistar , Drug Liberation
13.
World J Gastroenterol ; 30(30): 3625-3627, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39193575

ABSTRACT

In this issue of World Journal of Gastroenterology, Huang et al reported that Calculus bovis (CB), a traditional Chinese herbal medicine, impedes the growth of liver cancers in vivo. Through further in vitro studies, they showed that CB suppressed the M2 polarization of tumor-associated macrophages by suppressing the Wnt signaling pathway, which consequently inhibited the growth of liver cancer. Although the effects of traditional Chinese herbal medicine are often not scientifically proven, Huang et al successfully identified the molecular mechanism involved in the anticancer effect of CB, and it is anticipated that the molecular mechanisms involved in the effects of other traditional Chinese herbal medicines will be scientifically elucidated, as demonstrated in this article.


Subject(s)
Drugs, Chinese Herbal , Liver Neoplasms , Wnt Signaling Pathway , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Animals , Wnt Signaling Pathway/drug effects , Medicine, Chinese Traditional/methods , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
14.
Cell Death Dis ; 15(8): 570, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112459

ABSTRACT

Bromodomain Adjacent to Zinc Finger Domain 1A (BAZ1A) is a critical regulator of chromatin remodeling. We sought to clarify the roles of BAZ1A in the etiology of colorectal cancer, including the mechanisms of its alternatively spliced variants. Public databases were examined and revealed high BAZ1A expression in the majority of colorectal cancer patients, which was corroborated in a panel of human colon cancer cell lines. BAZ1A silencing reduced cell viability and increased markers of DNA damage, apoptosis, and senescence, along with the downregulation of Wnt/ß-catenin signaling. The corresponding molecular changes resulted in tumor growth inhibition when BAZ1A-knockout cells were implanted into nude mice. In rescue experiments, a short isoform of BAZ1A that was associated with alternative splicing by the DBIRD complex failed to restore DNA repair activity in colon cancer cells and maintained chemosensitivity to phleomycin treatment, unlike the full-length BAZ1A. A working model proposes that a buried domain in the N-terminus of the BAZ1A short isoform lacks the ability to access linker DNA, thereby disrupting the activity of the associated chromatin remodeling complexes. Given the current interest in RNA splicing deregulation and cancer etiology, additional mechanistic studies are warranted with new lead compounds targeting BAZ1A, and other members of the BAZ family, with a view to improved therapeutic interventions.


Subject(s)
Alternative Splicing , Colorectal Neoplasms , DNA Damage , Mice, Nude , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Alternative Splicing/genetics , Alternative Splicing/drug effects , Animals , Mice , Cell Line, Tumor , Apoptosis/drug effects , Apoptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Wnt Signaling Pathway/drug effects , DNA Repair/drug effects , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , HCT116 Cells
15.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114907

ABSTRACT

(+)4-cholesten-3-one has been proved to have potential wound healing effect in the process of wound regeneration. This study aimed to evaluate the effect of (+)4-cholesten-3-one/sodium alginate/gelatin on skin injury and reveal its potential molecular mechanism. First, we prepared sodium alginate/gelatin hydrogel (SA/Gel hydrogel) with different ratios and tested their characteristics. Based on these results, different concentrations of (+)4-cholesten-3-one were added into SA/Gel hydrogel. A full-thickness skin injury model was successfully established to evaluate wound healing activityin vivo. HE staining and Masson staining were used to evaluate the thickness of granulation tissue and collagen deposition level. Immunohistochemical staining and immunofluorescence staining were applied to detect the level of revascularization and proliferation in each group of wounds. Western blot, quantitative-PCR and immunofluorescence staining were used to detect the expression of proteins related to Wnt/ß-catenin signaling pathway in each group of wounds.In vitroresults showed that the hydrogel not only created a 3D structure for cell adhesion and growth, but also exhibited good swelling ability, excellent degradability and favorable bio-compatibility. Most importantly,in vivoexperiments further indicated that (+)4-cholesten-3-one/SA/Gel hydrogel effectively enhanced wound healing. The effectiveness is due to its superior abilities in accelerating healing process, granulation tissue regeneration, collagen deposition, promoting angiogenesis, tissue proliferation, as well as fibroblast activation and differentiation. The underlying mechanism was related to the Wnt/ß-catenin signaling pathway. This study highlighted that (+)4-cholesten-3-one/SA/Gel hydrogel holds promise as a wound healing dressing in future clinical applications.


Subject(s)
Alginates , Gelatin , Hydrogels , Regeneration , Skin , Wound Healing , Wound Healing/drug effects , Alginates/chemistry , Animals , Gelatin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/injuries , Skin/drug effects , Skin/metabolism , Regeneration/drug effects , Cell Proliferation/drug effects , Male , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Collagen/chemistry , Wnt Signaling Pathway/drug effects , Humans
16.
Nutrients ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125288

ABSTRACT

Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/ß-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.


Subject(s)
Carcinogenesis , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Female , Mice , Male , Diet, High-Fat/adverse effects , Carcinogenesis/drug effects , Polyporales , Mice, Inbred C57BL , Wnt Signaling Pathway/drug effects , Insulin-Like Growth Factor I/metabolism , Colorectal Neoplasms/prevention & control , Disease Models, Animal , Adenomatous Polyposis Coli Protein/genetics
17.
Sci Rep ; 14(1): 15022, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951570

ABSTRACT

Cartilage tissue engineering aims to develop functional substitutes for treating cartilage defects and osteoarthritis. Traditional two-dimensional (2D) cell culture systems lack the complexity of native cartilage, leading to the development of 3D regenerative cartilage models. In this study, we developed a 3D model using Gelatin Methacryloyl (GelMA)-based hydrogels seeded with Y201 cells, a bone marrow mesenchymal stem cell line. The model investigated chondrogenic differentiation potential in response to Wnt3a stimulation within the GelMA scaffold and validated using known chondrogenic agonists. Y201 cells demonstrated suitability for the model, with increased proteoglycan content and upregulated chondrogenic marker expression under chondrogenic conditions. Wnt3a enhanced cell proliferation, indicating activation of the Wnt/ß-catenin pathway, which plays a role in cartilage development. GelMA hydrogels provided an optimal scaffold, supporting cell viability and proliferation. The 3D model exhibited consistent responses to chondrogenic agonists, with TGF-ß3 enhancing cartilage-specific extracellular matrix (ECM) production and chondrogenic differentiation. The combination of Wnt3a and TGF-ß3 showed synergistic effects, promoting chondrogenic differentiation and ECM production. This study presents a 3D regenerative cartilage model with potential for investigating cartilage biology, disease mechanisms, and drug screening. The model provides insights into complex cartilage regeneration mechanisms and offers a platform for developing therapeutic approaches for cartilage repair and osteoarthritis treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Tissue Engineering , Wnt3A Protein , Wnt3A Protein/metabolism , Chondrogenesis/drug effects , Tissue Engineering/methods , Cell Proliferation/drug effects , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cartilage/metabolism , Gelatin/chemistry , Tissue Scaffolds/chemistry , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/pharmacology , Cell Line , Extracellular Matrix/metabolism , Wnt Signaling Pathway/drug effects , Chondrocytes/metabolism , Chondrocytes/cytology , Animals
18.
ACS Nano ; 18(29): 19332-19344, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38990329

ABSTRACT

The therapeutic response of microsatellite instability-high (MSI-H) colorectal cancer (CRC) to immune checkpoint inhibitors (ICI) is indeed surprising; however, the emergence of acquired resistance poses an even greater threat to the survival of these patients. Herein, bioinformatics analysis of MSI-H CRC samples revealed that Wnt signaling pathway represents a promising target for acquired immune reactivation, while subsequent analysis and biochemical testing substantiated the inclination of Wnt-hyperactive CRC cells to engage in macropinocytosis with human serum albumin (HSA). These findings have inspired us to develop an engineered HSA that not only possesses the ability to specifically target cancer cells but also effectively suppresses the Wnt/ß-catenin cascade within these malignant cells. In pursuit of this objective, a comprehensive screening of reported Wnt small-molecule inhibitors was conducted to evaluate their affinity with HSA, and it was discovered that Carnosic acid (CA) exhibited the highest affinity while simultaneously revealing multiple binding sites. Further investigation revealed that CA HSA the capability to engineer HSA into spherical and size-tunable nanostructures known as eHSA (Engineering HSA particle), which demonstrated optimized macropinocytosis-dependent cellular internalization. As anticipated, eHSA effectively suppressed the Wnt signaling pathway and reactivated the acquired immune response in vivo. Furthermore, eHSA successfully restored sensitivity to Anti-PD1's anticancer effects in both subcutaneous and orthotopic mouse homograft models of MSI-H CRC, as well as a humanized hu-PBMC patient-derived orthotopic xenograft (PDOX) mouse model of MSI-H CRC, all while maintaining a favorable safety profile. The collective implementation of this clinically viable immune reactivation strategy not only enables the delivery of Wnt inhibitors for CRC therapy, but also serves as an exemplary demonstration of precision-medicine-guided nanopharmaceutical development that effectively harnesses specific cellular indications in pathological states.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Microsatellite Instability , Serum Albumin, Human , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Animals , Microsatellite Instability/drug effects , Mice , Serum Albumin, Human/chemistry , Wnt Signaling Pathway/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Mice, Nude , Cell Proliferation/drug effects
19.
Nat Commun ; 15(1): 5874, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997284

ABSTRACT

Mucus injury associated with goblet cell (GC) depletion constitutes an early event in inflammatory bowel disease (IBD). Using single-cell sequencing to detect critical events in mucus dysfunction, we discover that the Kazal-type serine protease inhibitor SPINK4 is dynamically regulated in colitic intestine in parallel with disease activities. Under chemically induced colitic conditions, the grim status in Spink4-conditional knockout mice is successfully rescued by recombinant murine SPINK4. Notably, its therapeutic potential is synergistic with existing TNF-α inhibitor infliximab in colitis treatment. Mechanistically, SPINK4 promotes GC differentiation using a Kazal-like motif to modulate EGFR-Wnt/ß-catenin and -Hippo pathways. Microbiota-derived diacylated lipoprotein Pam2CSK4 triggers SPINK4 production. We also show that monitoring SPINK4 in circulation is a reliable noninvasive technique to distinguish IBD patients from healthy controls and assess disease activity. Thus, SPINK4 serves as a serologic biomarker of IBD and has therapeutic potential for colitis via intrinsic EGFR activation in intestinal homeostasis.


Subject(s)
Colitis , Mice, Knockout , Animals , Colitis/genetics , Colitis/chemically induced , Colitis/pathology , Colitis/drug therapy , Colitis/metabolism , Humans , Mice , Goblet Cells/metabolism , Goblet Cells/pathology , Goblet Cells/drug effects , ErbB Receptors/metabolism , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Mice, Inbred C57BL , Serine Peptidase Inhibitors, Kazal Type/genetics , Serine Peptidase Inhibitors, Kazal Type/metabolism , Wnt Signaling Pathway/drug effects , Male , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Female , Disease Models, Animal , Biomarkers/blood , Biomarkers/metabolism , Cell Differentiation
20.
Neurosci Bull ; 40(8): 1037-1052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39014176

ABSTRACT

Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.


Subject(s)
Disease Models, Animal , Fluoxetine , Mice, Inbred C57BL , Myelin Sheath , Stress Disorders, Post-Traumatic , Animals , Stress Disorders, Post-Traumatic/drug therapy , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Male , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Parietal Lobe/drug effects , Wnt Signaling Pathway/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL