Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Open Forum Infect Dis ; 11(2): ofae024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38390464

RESUMO

Background: People with cystic fibrosis (CF) are at increased risk for bronchiectasis, and several reports suggest that CF carriers may also be at higher risk for developing bronchiectasis. The purpose of this study was to determine if CF carriers are at risk for more severe courses or complications of bronchiectasis. Methods: Using MarketScan data (2001-2021), we built a cohort consisting of 105 CF carriers with bronchiectasis and 300 083 controls with bronchiectasis but without a CF carrier diagnosis. We evaluated if CF carriers were more likely to be hospitalized for bronchiectasis. In addition, we examined if CF carriers were more likely to be infected with Pseudomonas aeruginosa or nontuberculous mycobacteria (NTM) or to have filled more antibiotic prescriptions. We considered regression models for incident and rate outcomes that controlled for age, sex, smoking status, and comorbidities. Results: The odds of hospitalization were almost 2.4 times higher (95% CI, 1.116-5.255) for CF carriers with bronchiectasis when compared with non-CF carriers with bronchiectasis. The estimated odds of being diagnosed with a Pseudomonas infection for CF carriers vs noncarriers was about 4.2 times higher (95% CI, 2.417-7.551) and 5.4 times higher (95% CI, 3.398-8.804) for being diagnosed with NTM. The rate of distinct antibiotic fill dates was estimated to be 2 times higher for carriers as compared with controls (95% CI, 1.735-2.333), and the rate ratio for the total number of days of antibiotics supplied was estimated as 2.8 (95% CI, 2.290-3.442). Conclusions: CF carriers with bronchiectasis required more hospitalizations and more frequent administration of antibiotics as compared with noncarriers. Given that CF carriers were also more likely to be diagnosed with Pseudomonas and NTM infections, CF carriers with bronchiectasis may have a phenotype more resembling CF-related bronchiectasis than non-CF bronchiectasis.

3.
Physiol Rep ; 10(17): e15340, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36073059

RESUMO

In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl-  and HCO3 -  secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.


Assuntos
Fibrose Cística , Animais , Bicarbonatos , Fibrose Cística/tratamento farmacológico , Depuração Mucociliar , Mucosa Respiratória , Suínos , Trometamina
4.
Proc Natl Acad Sci U S A ; 119(13): e2121731119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35324331

RESUMO

SignificanceIn many lung diseases, increased amounts of and/or abnormal mucus impair mucociliary clearance, a key defense against inhaled and aspirated material. Submucosal glands lining cartilaginous airways secrete mucus strands that are pulled by cilia until they break free from the duct and sweep upward toward the larynx, carrying particulates. In cystic fibrosis (CF) pigs, progressive clearance of insufflated microdisks was repeatedly interrupted as microdisks abruptly recoiled. Aerosolizing a reducing agent to break disulfide bonds linking mucins ruptured mucus strands, freeing them from submucosal gland ducts and allowing cilia to propel them up the airways. These findings highlight the abnormally increased elasticity of CF mucus and suggest that agents that break disulfide bonds might have value in lung diseases with increased mucus.


Assuntos
Fibrose Cística , Depuração Mucociliar , Animais , Dissulfetos , Muco , Mucosa Respiratória , Suínos
5.
Clin Infect Dis ; 75(7): 1115-1122, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35142340

RESUMO

BACKGROUND: People with cystic fibrosis (CF) routinely suffer from recurrent sinopulmonary infections. Such infections require frequent courses of antimicrobials and often involve multidrug-resistant organisms. The goal of this study was to identify real-world evidence for the effectiveness of elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA) in decreasing infection-related visits and antimicrobial use in people with CF. METHODS: Using IBM MarketScan data, we identified 389 enrollees with CF who began taking ELX/TEZ/IVA before 1 December 2019 and were enrolled from 1 July 2019 to 14 March 2020. We also identified a comparison population who did not begin ELX/TEZ/IVA during the study period. We compared the following outcomes in the 15 weeks before and after medication initiation: total healthcare visits, inpatient visits, infection-related visits, and antimicrobial prescriptions. We analyzed outcomes using both a case-crossover analysis and a difference-in-differences analysis, to control for underlying trends. RESULTS: For the case-crossover analysis, ELX/TEZ/IVA initiation was associated with the following changes over a 15-week period: change in overall healthcare visit dates, -2.5 (95% confidence interval, -3.31 to -1.7); change in inpatient admissions, -0.16 (-.22 to -.10); change in infection-related visit dates, -0.62 (-.93 to -.31); and change in antibiotic prescriptions, -0.78 (-1.03 to -.54). Results from the difference-in-differences approach were similar. CONCLUSIONS: We show a rapid reduction in infection-related visits and antimicrobial use among people with CF after starting a therapy that was not explicitly designed to treat infections. Currently, there are >30 000 people living with CF in the United States alone. Given that this therapy is effective for approximately 90% of people with CF, the impact on respiratory infections and antimicrobial use may be substantial.


Assuntos
Fibrose Cística , Aminofenóis/uso terapêutico , Antibacterianos/uso terapêutico , Benzodioxóis , Agonistas dos Canais de Cloreto/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Humanos , Indóis , Mutação , Pirazóis , Piridinas , Pirrolidinas , Quinolonas
6.
Am J Respir Crit Care Med ; 204(6): 692-702, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34170795

RESUMO

Rationale: Although it is clear that cystic fibrosis (CF) airway disease begins at a very young age, the early and subsequent steps in disease pathogenesis and the relative contribution of infection, mucus, and inflammation are not well understood. Objectives: As one approach to assessing the early contribution of infection, we tested the hypothesis that early and continuous antibiotics would decrease the airway bacterial burden. We believed that, if they do, this might reveal aspects of the disease that are more or less sensitive to decreasing infection. Methods: Three groups of pigs were studied from birth until ∼3 weeks of age: 1) wild-type, 2) CF, and 3) CF pigs treated continuously with broad-spectrum antibiotics from birth until study completion. Disease was assessed with chest computed tomography, histopathology, microbiology, and BAL. Measurements and Main Results: Disease was present by 3 weeks of age in CF pigs. Continuous antibiotics from birth improved chest computed tomography imaging abnormalities and airway mucus accumulation but not airway inflammation in the CF pig model. However, reducing bacterial infection did not improve two disease features already present at birth in CF pigs: air trapping and submucosal gland duct plugging. In the CF sinuses, antibiotics did not prevent the development of infection or disease or the number of bacteria but did alter the bacterial species. Conclusions: These findings suggest that CF airway disease begins immediately after birth and that early and continuous antibiotics impact some, but not all, aspects of CF lung disease development.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Pulmão/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Bactérias/isolamento & purificação , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/patologia , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Pulmão/patologia , Tomografia Computadorizada Multidetectores , Mucosa Respiratória/microbiologia , Mucosa Respiratória/patologia , Suínos
7.
Cells ; 10(5)2021 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923029

RESUMO

Cystic fibrosis (CF) is caused by genetic mutations of the CF transmembrane conductance regulator (CFTR), leading to disrupted transport of Cl- and bicarbonate and CF lung disease featuring bacterial colonization and chronic infection in conducting airways. CF pigs engineered by mutating CFTR develop lung disease that mimics human CF, and are well-suited for investigating CF lung disease therapeutics. Clinical data suggest small airways play a key role in the early pathogenesis of CF lung disease, but few preclinical studies have focused on small airways. Efficient targeted delivery of CFTR cDNA to small airway epithelium may correct the CFTR defect and prevent lung infections. Adeno-associated virus 4 (AAV4) is a natural AAV serotype and a safe vector with lower immunogenicity than other gene therapy vectors such as adenovirus. Our analysis of AAV natural serotypes using cultured primary pig airway epithelia showed that AAV4 has high tropism for airway epithelia and higher transduction efficiency for small airways compared with large airways. AAV4 mediated the delivery of CFTR, and corrected Cl- transport in cultured primary small airway epithelia from CF pigs. Moreover, AAV4 was superior to all other natural AAV serotypes in transducing ITGα6ß4+ pig distal lung progenitor cells. In addition, AAV4 encoding eGFP can infect pig distal lung epithelia in vivo. This study demonstrates AAV4 tropism in small airway progenitor cells, which it efficiently transduces. AAV4 offers a novel tool for mechanistical study of the role of small airway in CF lung pathogenesis in a preclinical large animal model.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Fibrose Cística/terapia , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vetores Genéticos/genética , Humanos , Suínos
8.
Elife ; 92020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026343

RESUMO

Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.


Assuntos
Ectodisplasinas/genética , Glândulas Exócrinas/imunologia , Mucosa Respiratória/imunologia , Staphylococcus aureus/fisiologia , Sus scrofa/imunologia , Animais , Ectodisplasinas/imunologia , Feminino , Técnicas de Inativação de Genes , Masculino , Sus scrofa/genética
9.
Am J Respir Cell Mol Biol ; 62(1): 104-111, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31242392

RESUMO

Although chronic bacterial infections and inflammation are associated with progressive lung disease in patients with cystic fibrosis (CF), much less is known regarding the contributions of respiratory viral infections to this process. Clinical studies suggest that antiviral host defenses may be compromised in individuals with CF, and CF airway epithelia exhibit impaired antiviral responses in vitro. Here, we used the CF pig model to test the hypothesis that the antiviral activity of respiratory secretions is reduced in CF. We developed an in vitro assay to measure the innate antiviral activity present in airway surface liquid (ASL) from CF and non-CF pigs. We found that tracheal and nasal ASL from newborn non-CF pigs exhibited dose-dependent inhibitory activity against several enveloped and encapsidated viruses, including Sendai virus, respiratory syncytial virus, influenza A, and adenovirus. Importantly, we found that the anti-Sendai virus activity of nasal ASL from newborn CF pigs was significantly diminished relative to non-CF littermate controls. This diminution of extracellular antiviral defenses appears to be driven, at least in part, by the differences in pH between CF and non-CF ASL. These data highlight the novel antiviral properties of native airway secretions and suggest the possibility that defects in extracellular antiviral defenses contribute to CF pathogenesis.


Assuntos
Antivirais/imunologia , Líquidos Corporais/imunologia , Fibrose Cística/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Animais , Líquidos Corporais/virologia , Fibrose Cística/virologia , Concentração de Íons de Hidrogênio , Pulmão/virologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Suínos , Traqueia/imunologia , Traqueia/virologia , Viroses/imunologia , Viroses/virologia , Vírus/imunologia
10.
Gene Ther ; 26(6): 240-249, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962536

RESUMO

Adeno-associated virus (AAV) has been investigated to transfer the cystic fibrosis transmembrane conductance regulator (CFTR) to airways. Inhaled AAV2-CFTR in people with cystic fibrosis (CF) is safe, but inefficient. In vitro, AAV2 transduction of human airway epithelia on the apical (luminal) side is inefficient, but efficient basolaterally. We previously selected AAV2.5T, a novel capsid that apically transduces CF human airway epithelia and efficiently restores CFTR function. We hypothesize the AAV receptor (AAVR) is basolaterally localized, and that AAV2.5T utilizes an alternative apical receptor. We found AAVR in human airway epithelia by western blot and RNA-Seq analyses. Using immunocytochemistry we did not find endogenous AAVR at membranes but overexpression localized AAVR to the basolateral membrane, where it preferentially increased transduction. Anti-AAVR antibodies blocked transduction by AAV2 from the basolateral side but not AAV2.5T from the apical side, suggesting a unique apical receptor. Finally, we found infection by AAV2 but not AAV2.5T was blocked by CRISPR knockout of AAVR in cell lines. Our data suggest the absence of apical AAVR is rate limiting for AAV2, and efficient transduction by AAV2.5T is accomplished using an AAVR independent pathway. Our findings inform the development of gene therapy for CF, and AAV vectors in general.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Receptores de Superfície Celular/genética , Transfecção/métodos , Linhagem Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/metabolismo
11.
Ann Am Thorac Soc ; 15(Suppl 3): S171-S176, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30431346

RESUMO

Cystic fibrosis (CF) lung disease is the major cause of morbidity and mortality in people with CF. Abnormal mucociliary transport has been the leading hypothesis for the underlying pathogenesis of CF airway disease. However, this has been difficult to investigate at very early time points. A porcine CF model, which recapitulates many features of CF disease in humans, enables studies to be performed in non-CF and CF pigs on the day that they are born. In newborn CF pigs, we found that under basal conditions, mucociliary transport rates in non-CF and CF pigs are similar. However, after cholinergic stimulation, which stimulates submucosal gland secretion, particles become stuck in the CF airways owing to a failure of mucus strands to release from submucosal glands. In this review, we summarize these recent discoveries and also discuss the morphology, composition, and function of mucins in the porcine lung.


Assuntos
Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Depuração Mucociliar/fisiologia , Mucosa Respiratória/fisiologia , Animais , Animais Recém-Nascidos , Fibrose Cística/etiologia , Modelos Animais de Doenças , Muco/metabolismo , Suínos
12.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089726

RESUMO

BACKGROUND: Disruption of cystic fibrosis transmembrane conductance regulator (CFTR) anion channel function causes cystic fibrosis (CF), and lung disease produces most of the mortality. Loss of CFTR-mediated HCO3- secretion reduces the pH of airway surface liquid (ASL) in vitro and in neonatal humans and pigs in vivo. However, we previously found that, in older children and adults, ASL pH does not differ between CF and non-CF. Here, we tested whether the pH of CF ASL increases with time after birth. Finding that it did suggested that adaptations by CF airways increase ASL pH. This conjecture predicted that increasing CFTR activity in CF airways would further increase ASL pH and also that increasing CFTR activity would correlate with increases in ASL pH. METHODS: To test for longitudinal changes, we measured ASL pH in newborns and then at 3-month intervals. We also studied people with CF (bearing G551D or R117H mutations), in whom we could acutely stimulate CFTR activity with ivacaftor. To gauge changes in CFTR activity, we measured changes in sweat Cl- concentration immediately before and 48 hours after starting ivacaftor. RESULTS: Compared with that in the newborn period, ASL pH increased by 6 months of age. In people with CF bearing G551D or R117H mutations, ivacaftor did not change the average ASL pH; however reductions in sweat Cl- concentration correlated with elevations of ASL pH. Reductions in sweat Cl- concentration also correlated with improvements in pulmonary function. CONCLUSIONS: Our results suggest that CFTR-independent mechanisms increase ASL pH in people with CF. We speculate that CF airway disease, which begins soon after birth, is responsible for the adaptation. FUNDING: Vertex Inc., the NIH (P30DK089507, 1K08HL135433, HL091842, HL136813, K24HL102246), the Cystic Fibrosis Foundation (SINGH17A0 and SINGH15R0), and the Burroughs Wellcome Fund.


Assuntos
Aminofenóis/farmacologia , Bicarbonatos/metabolismo , Líquido da Lavagem Broncoalveolar/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/patologia , Quinolonas/farmacologia , Adulto , Aminofenóis/uso terapêutico , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/genética , Cloretos/análise , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/genética , Estudos Longitudinais , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Quinolonas/uso terapêutico , Mucosa Respiratória/metabolismo , Suor/química , Suor/efeitos dos fármacos , Adulto Jovem
13.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L133-L148, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29631359

RESUMO

Mainstay therapeutics are ineffective in some people with asthma, suggesting a need for additional agents. In the current study, we used vagal ganglia transcriptome profiling and connectivity mapping to identify compounds beneficial for alleviating airway hyperreactivity (AHR). As a comparison, we also used previously published transcriptome data from sensitized mouse lungs and human asthmatic endobronchial biopsies. All transcriptomes revealed agents beneficial for mitigating AHR; however, only the vagal ganglia transcriptome identified agents used clinically to treat asthma (flunisolide, isoetarine). We also tested one compound identified by vagal ganglia transcriptome profiling that had not previously been linked to asthma and found that it had bronchodilator effects in both mouse and pig airways. These data suggest that transcriptome profiling of the vagal ganglia might be a novel strategy to identify potential asthma therapeutics.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Gânglios Parassimpáticos/metabolismo , Transcriptoma , Nervo Vago/metabolismo , Animais , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/terapia , Gânglios Parassimpáticos/patologia , Masculino , Camundongos , Camundongos Knockout , Nervo Vago/patologia
14.
Lung ; 196(2): 219-229, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29380034

RESUMO

Airway hyperreactivity is a hallmark feature of asthma and can be precipitated by airway insults, such as ozone exposure or viral infection. A proposed mechanism linking airway insults to airway hyperreactivity is augmented cholinergic transmission. In the current study, we tested the hypothesis that acute potentiation of cholinergic transmission is sufficient to induce airway hyperreactivity. We atomized the cholinergic agonist bethanechol to neonatal piglets and forty-eight hours later measured airway resistance. Bethanechol-treated piglets displayed increased airway resistance in response to intravenous methacholine compared to saline-treated controls. In the absence of an airway insult, we expected to find no evidence of airway inflammation; however, transcripts for several asthma-associated cytokines, including IL17A, IL1A, and IL8, were elevated in the tracheas of bethanechol-treated piglets. In the lungs, prior bethanechol treatment increased transcripts for IFNγ and its downstream target CXCL10. These findings suggest that augmented cholinergic transmission is sufficient to induce airway hyperreactivity, and raise the possibility that cholinergic-mediated regulation of pro-inflammatory pathways might contribute.


Assuntos
Resistência das Vias Respiratórias/efeitos dos fármacos , Betanecol/toxicidade , Hiper-Reatividade Brônquica/induzido quimicamente , Broncoconstrição/efeitos dos fármacos , Citocinas/metabolismo , Pulmão/efeitos dos fármacos , Agonistas Muscarínicos/toxicidade , Ativação Transcricional/efeitos dos fármacos , Administração por Inalação , Animais , Animais Recém-Nascidos , Betanecol/administração & dosagem , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Citocinas/genética , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/fisiopatologia , Agonistas Muscarínicos/administração & dosagem , Sus scrofa , Regulação para Cima
15.
Proc Natl Acad Sci U S A ; 115(6): 1370-1375, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358407

RESUMO

Differentiated airway epithelia produce sonic hedgehog (SHH), which is found in the thin layer of liquid covering the airway surface. Although previous studies showed that vertebrate HH signaling requires primary cilia, as airway epithelia mature, the cells lose primary cilia and produce hundreds of motile cilia. Thus, whether airway epithelia have apical receptors for SHH has remained unknown. We discovered that motile cilia on airway epithelial cells have HH signaling proteins, including patched and smoothened. These cilia also have proteins affecting cAMP-dependent signaling, including Gαi and adenylyl cyclase 5/6. Apical SHH decreases intracellular levels of cAMP, which reduces ciliary beat frequency and pH in airway surface liquid. These results suggest that apical SHH may mediate noncanonical HH signaling through motile cilia to dampen respiratory defenses at the contact point between the environment and the lung, perhaps counterbalancing processes that stimulate airway defenses.


Assuntos
Brônquios/citologia , Células Epiteliais/metabolismo , Proteínas Hedgehog/metabolismo , Traqueia/citologia , Células Cultivadas , Cílios/metabolismo , Cílios/fisiologia , AMP Cíclico/metabolismo , Células Epiteliais/citologia , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
16.
Environ Health Perspect ; 125(7): 077003, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28696208

RESUMO

BACKGROUND: Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), which contains antimicrobial proteins and peptides (AMPs). Cationic AMPs bind negatively charged bacteria to exert their antimicrobial activity. PM arriving in the airways could potentially interact with AMPs in the ASL to affect their antimicrobial activity. OBJECTIVES: We hypothesized that PM can interact with ASL AMPs to impair their antimicrobial activity. METHODS: We exposed pig and human airway explants, pig and human ASL, and the human cationic AMPs ß-defensin-3, LL-37, and lysozyme to CFA or control. Thereafter, we assessed the antimicrobial activity of exposed airway samples using both bioluminescence and standard colony-forming unit assays. We investigated PM-AMP electrostatic interaction by attenuated total reflection Fourier-transform infrared spectroscopy and measuring the zeta potential. We also studied the adsorption of AMPs on PM. RESULTS: We found increased bacterial survival in CFA-exposed airway explants, ASL, and AMPs. In addition, we report that PM with a negative surface charge can adsorb cationic AMPs and form negative particle-protein complexes. CONCLUSION: We propose that when CFA arrives at the airway, it rapidly adsorbs AMPs and creates negative complexes, thereby decreasing the functional amount of AMPs capable of killing pathogens. These results provide a novel translational insight into an early mechanism for how ambient PM increases the susceptibility of the airways to bacterial infection. https://doi.org/10.1289/EHP876.


Assuntos
Poluentes Atmosféricos/toxicidade , Peptídeos Catiônicos Antimicrobianos/genética , Cinza de Carvão/toxicidade , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Humanos , Sistema Respiratório/efeitos dos fármacos , Sus scrofa
17.
J Appl Physiol (1985) ; 123(3): 526-533, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28620056

RESUMO

Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis.NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis.


Assuntos
Brônquios/diagnóstico por imagem , Brônquios/crescimento & desenvolvimento , Fibrose Cística/diagnóstico por imagem , Traqueia/efeitos dos fármacos , Traqueia/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pulmão/diagnóstico por imagem , Pulmão/crescimento & desenvolvimento , Suínos
18.
Proc Natl Acad Sci U S A ; 114(26): 6842-6847, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28607090

RESUMO

Gel-forming mucins, the primary macromolecular components of airway mucus, facilitate airway clearance by mucociliary transport. In cystic fibrosis (CF) altered mucus properties impair mucociliary transport. Airways primarily secrete two closely related gel-forming mucins, MUC5B and MUC5AC. However, their morphologic structures and associations in airways that contain abundant submucosal glands and goblet cells are uncertain. Moreover, there is limited knowledge about mucins in airways not affected by inflammation, infection, or remodeling or in CF airways. Therefore, we examined airways freshly excised from newborn non-CF pigs and CF pigs before secondary manifestations develop. We found that porcine submucosal glands produce MUC5B, whereas goblet cells produce predominantly MUC5AC plus some MUC5B. We found that MUC5B emerged from submucosal gland ducts in the form of strands composed of multiple MUC5B filaments. In contrast, MUC5AC emerged from goblet cells as wispy threads and sometimes formed mucin sheets. In addition, MUC5AC often partially coated the MUC5B strands. Compared with non-CF, MUC5B more often filled CF submucosal gland ducts. MUC5AC sheets also accumulated in CF airways overlying MUC5B strands. These results reveal distinct morphology and interactions for MUC5B and MUC5AC and suggest that the two mucins make distinct contributions to mucociliary transport. Thus, they provide a framework for understanding abnormalities in disease.


Assuntos
Remodelação das Vias Aéreas , Fibrose Cística/metabolismo , Células Caliciformes/metabolismo , Mucina-5AC/metabolismo , Mucina-5B/metabolismo , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Células Caliciformes/patologia , Camundongos , Camundongos Knockout , Mucina-5AC/genética , Mucina-5B/genética
19.
J Cyst Fibros ; 16(4): 471-474, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28377087

RESUMO

BACKGROUND: We sought to address whether CF macrophages have a primary functional defect as a consequence of CFTR loss and thus contribute to the onset of infection and inflammation observed in CF lung disease. METHODS: Monocyte derived macrophages (MDMs) were prepared from newborn CF and non-CF pigs. CFTR mRNA expression was quantified by rtPCR and anion channel function was determined using whole cell patch clamp analysis. IL8 and TNFα release from MDMs in response to lipopolysaccharide stimulation was measured by ELISA. RESULTS: CFTR was expressed in MDMs by Q-rtPCR at a lower level than in epithelial cells. MDMs exhibited functional CFTR current at the cell membrane and this current was absent in CF MDMs. CF MDMs demonstrated an exaggerated response to lipopolysaccharide stimulation. CONCLUSIONS: In the absence of CFTR function, macrophages from newborn CF pigs exhibit an increased inflammatory response to a lipopolysaccharide challenge. This may contribute to the onset and progression of CF lung disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Inflamação/imunologia , Macrófagos/imunologia , Animais , Animais Recém-Nascidos , Fibrose Cística/genética , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Imunização/métodos , Interleucina-8/análise , Lipopolissacarídeos/imunologia , Técnicas de Patch-Clamp/métodos , Suínos , Fator de Necrose Tumoral alfa/análise
20.
Clin Case Rep ; 5(2): 93-96, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28174630

RESUMO

Mounier-Kuhn syndrome is a rare clinical disorder characterized by tracheobronchial dilation and recurrent lower respiratory tract infections. While the etiology of the disease remains unknown, histopathological analysis of Mounier-Kuhn airways demonstrates that the disease is, in part, characterized by cellular changes in airway smooth muscle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA