Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Cell Commun Signal ; 22(1): 154, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419089

RESUMO

BACKGROUND: Although GqPCR activation often leads to cell survival by activating the PI3K/AKT pathway, it was previously shown that in several cell types AKT activity is reduced and leads to JNK activation and apoptosis. The mechanism of AKT inactivation in these cells involves an IGBP1-coupled PP2Ac switch that induces the dephosphorylation and inactivation of both PI3K and AKT. However, the machinery involved in the initiation of PP2A switch is not known. METHODS: We used phospho-mass spectrometry to identify the phosphorylation site of PP2Ac, and raised specific antibodies to follow the regulation of this phosphorylation. Other phosphorylations were monitored by commercial antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by a TUNEL assay as well as PARP1 cleavage using SDS-PAGE and Western blotting. RESULTS: We identified Ser24 as a phosphorylation site in PP2Ac. The phosphorylation is mediated mainly by classical PKCs (PKCα and PKCß) but not by novel PKCs (PKCδ and PKCε). By replacing the phosphorylated residue with either unphosphorylatable or phosphomimetic residues (S24A and S24E), we found that this phosphorylation event is necessary and sufficient to mediate the PP2A switch, which ultimately induces AKT inactivation, and a robust JNK-dependent apoptosis. CONCLUSION: Our results show that the PP2A switch is induced by PKC-mediated phosphorylation of Ser24-PP2Ac and that this phosphorylation leads to apoptosis upon GqPCR induction of various cells. We propose that this mechanism may provide an unexpected way to treat some cancer types or problems in the endocrine machinery.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569817

RESUMO

The p38 members of the mitogen-activated protein kinases (MAPKs) family mediate various cellular responses to stress conditions, inflammatory signals, and differentiation factors. They are constitutively active in chronic inflammatory diseases and some cancers. The differences between their transient effects in response to signals and the chronic effect in diseases are not known. The family is composed of four isoforms, of which p38α seems to be abnormally activated in diseases. p38α and p38ß are almost identical in sequence, structure, and biochemical and pharmacological properties, and the specific unique effects of each of them, if any, have not yet been revealed. This study aimed to reveal the specific effects induced by p38α and p38ß, both when transiently activated in response to stress and when chronically active. This was achieved via large-scale proteomics and phosphoproteomics analyses using stable isotope labeling of two experimental systems: one, mouse embryonic fibroblasts (MEFs) deficient in each of these p38 kinases and harboring either an empty vector or vectors expressing p38αWT, p38ßWT, or intrinsically active variants of these MAPKs; second, induction of transient stress by exposure of MEFs, p38α-/-, and p38ß-/- MEFs to anisomycin. Significant differences in the repertoire of the proteome and phosphoproteome between cells expressing active p38α and p38ß suggest distinct roles for each kinase. Interestingly, in both cases, the constitutive activation induced adaptations of the cells to the chronic activity so that known substrates of p38 were downregulated. Within the dramatic effect of p38s on the proteome and phosphoproteome, some interesting affected phosphorylation sites were those found in cancer-associated p53 and Hspb1 (HSP27) proteins and in cytoskeleton-associated proteins. Among these, was the stronger direct phosphorylation by p38α of p53-Ser309, which was validated on the Ser315 in human p53. In summary, this study sheds new light on the differences between chronic and transient p38α and p38ß signaling and on the specific targets of these two kinases.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Proteoma , Animais , Humanos , Camundongos , Proteoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fibroblastos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Semin Immunol ; 67: 101766, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141766

RESUMO

The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Peptídeos/metabolismo
4.
Nat Biotechnol ; 41(2): 239-251, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36203013

RESUMO

Post-translational modification (PTM) of antigens provides an additional source of specificities targeted by immune responses to tumors or pathogens, but identifying antigen PTMs and assessing their role in shaping the immunopeptidome is challenging. Here we describe the Protein Modification Integrated Search Engine (PROMISE), an antigen discovery pipeline that enables the analysis of 29 different PTM combinations from multiple clinical cohorts and cell lines. We expanded the antigen landscape, uncovering human leukocyte antigen class I binding motifs defined by specific PTMs with haplotype-specific binding preferences and revealing disease-specific modified targets, including thousands of new cancer-specific antigens that can be shared between patients and across cancer types. Furthermore, we uncovered a subset of modified peptides that are specific to cancer tissue and driven by post-translational changes that occurred in the tumor proteome. Our findings highlight principles of PTM-driven antigenicity, which may have broad implications for T cell-mediated therapies in cancer and beyond.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Humanos , Processamento de Proteína Pós-Traducional/genética , Peptídeos/genética , Antígenos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética
5.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580925

RESUMO

BACKGROUND: Soluble human leucocyte antigen (sHLA) molecules, released into the plasma, carry their original peptide cargo and provide insight into the protein synthesis and degradation schemes of their source cells and tissues. Other body fluids, such as pleural effusions, may also contain sHLA-peptide complexes, and can potentially serve as a source of tumor antigens since these fluids are drained from the tumor microenvironment. We explored this possibility by developing a methodology for purifying and analyzing large pleural effusion sHLA class I peptidomes of patients with malignancies or benign diseases. METHODS: Cleared pleural fluids, cell pellets present in the pleural effusions, and the primary tumor cells cultured from cancer patients' effusions, were used for immunoaffinity purification of the HLA molecules. The recovered HLA peptides were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and the resulting LC-MS/MS data were analyzed with the MaxQuant software tool. Selected tumor antigen peptides were tested for their immunogenicity potential with donor peripheral blood mononuclear cells (PBMCs) in an in vitro assay. RESULTS: Mass spectrometry analysis of the pleural effusions revealed 39,669 peptides attributable to 11,305 source proteins. The majority of peptides identified from the pleural effusions were defined as HLA ligands that fit the patients' HLA consensus sequence motifs. The membranal and soluble HLA peptidomes of each individual patient correlated to each other. Additionally, soluble HLA peptidomes from the same patient, obtained at different visits to the clinic, were highly similar. Compared with benign effusions, the soluble HLA peptidomes of malignant pleural effusions were larger and included HLA peptides derived from known tumor-associated antigens, including cancer/testis antigens, lung-related proteins, and vascular endothelial growth factor pathway proteins. Selected tumor-associated antigens that were identified by the immunopeptidomics were able to successfully prime CD8+ T cells. CONCLUSIONS: Pleural effusions contain sHLA-peptide complexes, and the pleural effusion HLA peptidome of patients with malignant tumors can serve as a rich source of biomarkers for tumor diagnosis and potential candidates for personalized immunotherapy.


Assuntos
Antígenos de Neoplasias , Derrame Pleural Maligno , Linfócitos T CD8-Positivos , Cromatografia Líquida , Antígenos de Histocompatibilidade Classe I , Humanos , Leucócitos Mononucleares , Masculino , Peptídeos , Espectrometria de Massas em Tandem , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
6.
J Proteome Res ; 21(1): 164-171, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34937342

RESUMO

Adaptive cellular and humoral immune responses to infectious agents require previous recognition of pathogenic peptides bound to human leukocyte antigen (HLA) class II molecules exposed on the surface of the professional antigen-presenting cells. Knowledge of how these peptide ligands are generated is essential to understand the basis for CD4+ T-cell-mediated immunity and tolerance. In this study, a high-throughput mass spectrometry analysis was used to identify more than 16,000 cell peptides bound to several HLA-DR and -DP class II molecules isolated from large amounts of uninfected and virus-infected human cells (ProteomeXchange accession: PXD028006). The analysis of the 1808 parental proteins containing HLA class II ligands revealed that these cell proteins were more acidic, abundant, and highly connected but less hydrophilic than non-parental proteomes. Therefore, the percentage of acidic residues was increased and hydroxyl and polar residues were decreased in the parental proteins for the HLA class II ligandomes versus the non-parental proteomes. This definition of the properties shared by parental proteins that constitute the source of the HLA class II ligandomes can serve as the basis for the development of bioinformatics tools to predict proteins that are most likely recognized by the immune system through the CD4+ helper T lymphocytes in both autoimmunity and infection.


Assuntos
Antígenos HLA , Antígenos HLA-DR , Linfócitos T CD4-Positivos , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ponto Isoelétrico , Pais
7.
J Clin Invest ; 131(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34651586

RESUMO

Neoantigens are now recognized drivers of the antitumor immune response. Recurrent neoantigens, shared among groups of patients, have thus become increasingly coveted therapeutic targets. Here, we report on the data-driven identification of a robustly presented, immunogenic neoantigen that is derived from the combination of HLA-A*01:01 and RAS.Q61K. Analysis of large patient cohorts indicated that this combination applies to 3% of patients with melanoma. Using HLA peptidomics, we were able to demonstrate robust endogenous presentation of the neoantigen in 10 tumor samples. We detected specific reactivity to the mutated peptide within tumor-infiltrating lymphocytes (TILs) from 2 unrelated patients, thus confirming its natural immunogenicity. We further investigated the neoantigen-specific clones and their T cell receptors (TCRs) via a combination of TCR sequencing, TCR overexpression, functional assays, and single-cell transcriptomics. Our analysis revealed a diverse repertoire of neoantigen-specific clones with both intra- and interpatient TCR similarities. Moreover, 1 dominant clone proved to cross-react with the highly prevalent RAS.Q61R variant. Transcriptome analysis revealed a high association of TCR clones with specific T cell phenotypes in response to cognate melanoma, with neoantigen-specific cells showing an activated and dysfunctional phenotype. Identification of recurrent neoantigens and their reactive TCRs can promote "off-the-shelf" precision immunotherapies, alleviating limitations of personalized treatments.


Assuntos
Antígenos de Neoplasias/imunologia , Melanoma/imunologia , Proteínas ras/imunologia , Linhagem Celular Tumoral , Antígenos HLA-A/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas ras/genética
8.
Mol Cell Proteomics ; 20: 100105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34087483

RESUMO

A subset of class I major histocompatibility complex (MHC)-bound peptides is produced from immature proteins that are rapidly degraded after synthesis. These defective ribosomal products (DRiPs) have been implicated in early alert of the immune system about impending infections. Interferons are important cytokines, produced in response to viral infection, that modulate cellular metabolism and gene expression patterns, increase the presentation of MHC molecules, and induce rapid degradation of proteins and cell-surface presentation of their derived MHC peptides, thereby contributing to the battle against pathogen infections. This study evaluated the role of interferons in the induction of rapid degradation of DRiPs to modulate the repertoire of DRiP-derived MHC peptides. Cultured human breast cancer cells were treated with interferons, and the rates of synthesis and degradation of cellular protein and their degradation products were determined by LC-MS/MS analysis, following the rates of incorporation of heavy stable isotope-labeled amino acids (dynamic stable isotope labeling by amino acids in cell culture, dynamic SILAC) at several time points after the interferon application. Large numbers of MHC peptides that incorporated the heavy amino acids faster than their source proteins indicated that DRiP peptides were abundant in the MHC peptidome; interferon treatment increased by about twofold their relative proportions in the peptidome. Such typical DRiP-derived MHC peptides were from the surplus subunits of the proteasome and ribosome, which are degraded because of the transition to immunoproteasomes and a new composition of ribosomes incorporating protein subunits that are induced by the interferon. We conclude that degradation of surplus subunits induced by the interferon is a major source for DRiP-MHC peptides, a phenomenon relevant to coping with viral infections, where a rapid presentation of MHC peptides derived from excess viral proteins may help alert the immune system about the impending infection.


Assuntos
Antígenos HLA/metabolismo , Interferons/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Humanos , Marcação por Isótopo , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Ribossômicas/metabolismo
9.
Mol Cell Proteomics ; 20: 100099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022431

RESUMO

The claims that a large fraction of the immunopeptidome is composed of spliced major histocompatibility complex (MHC) peptides have stirred significant excitement and raised controversy. Here, I suggest that there are likely no spliced peptides in the immunopeptidome, and if they exist at all, they are extremely rare. I base this claim on both biochemical and bioinformatics considerations. First, as a reactant in normal proteolytic reactions, water will compete with transpeptidation, which has been suggested as the mechanism of peptide splicing. The high mobility and abundance of water in aqueous solutions renders transpeptidation very inefficient and therefore unlikely to occur. Second, new studies have refuted the bioinformatics assignments to spliced peptides of most of the immunopeptidome MS data, suggesting that the correct assignments are likely other canonical, noncanonical, and post-translationally modified peptides. Therefore, I call for rigorous experimental methodology using heavy stable isotope peptides spiking into the immunoaffinity-purified mixtures of natural MHC peptides and analysis by the highly reliable targeted MS, to claim that MHC peptides are indeed spliced.


Assuntos
Complexo Principal de Histocompatibilidade , Peptídeos , Processamento de Proteína
10.
Nature ; 592(7852): 138-143, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731925

RESUMO

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Assuntos
Antígenos de Bactérias/análise , Antígenos de Bactérias/imunologia , Bactérias/imunologia , Antígenos HLA/imunologia , Melanoma/imunologia , Melanoma/microbiologia , Peptídeos/análise , Peptídeos/imunologia , Apresentação de Antígeno , Bactérias/classificação , Bactérias/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Antígenos HLA/análise , Humanos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/patologia , Metástase Neoplásica/imunologia , Filogenia , RNA Ribossômico 16S/genética
11.
iScience ; 24(2): 102051, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554062

RESUMO

Tumors with an impaired transporter associated with antigen processing (TAP) present several endoplasmic reticulum-derived self-antigens on HLA class I (HLA-I) which are absent on healthy cells. Selection of such TAP-independent antigens for T cell-based immunotherapy should include analysis of their expression on healthy cells to prevent therapy-induced adverse toxicities. However, it is unknown how the absence of clinically relevant antigens on healthy cells needs to be validated. Here, we monitored TAP-independent antigen presentation on various healthy cells after establishing a T cell tool recognizing a TAP-independent signal sequence receptor 1-derived antigen. We found that most but not all healthy cells present this antigen under normal and inflammatory conditions, indicating that TAP-independent antigen presentation is a variable phenomenon. Our data emphasize the necessity of extensive testing of a wide variety of healthy cell types to define clinically relevant TAP-independent antigens that can be safely targeted by immunotherapy.

12.
PLoS One ; 15(8): e0237540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804965

RESUMO

The yeast MAP kinase Hog1 pathway activates transcription of several hundreds genes. Large-scale gene expression and DNA binding assays suggest that most Hog1-induced genes are regulated by the transcriptional activators Msn2/4, Hot1 and Sko1. These studies also revealed the target genes of each activator and the putative binding sites on their promoters. In a previous study we identified a group of genes, which we considered the bona fide targets of Hog1, because they were induced in response to expression of intrinsically active mutant of Hog1, in the absence of any stress. We previously analyzed the promoter of the most highly induced gene, STL1, and noticed that some promoter properties were different from those proposed by large-scale data. We therefore continue to study promoters individually and present here analyses of promoters of more Hog1's targets, RTC3, HSP12, DAK1 and ALD3. We report that RTC3 and HSP12 promoters are robust and are induced, to different degrees, even in cells lacking all four activators. DAK1 and ALD3 promoters are not robust and fully depend on a single activator, DAK1 on Sko1 and ALD3 on Msn2/4. Most of these observations could not be inferred from the large-scale data. Msn2/4 are involved in regulating all four promoters. It was assumed, therefore, that the promoters are spontaneously active in ras2Δ cells, in which Msn2/4 are known to be de-repressed. Intriguingly, the promoters were not active in BY4741ras2Δ cells, but were de-repressed, as expected, in ras2Δ cells of other genetic backgrounds. This study describes two phenomena. One, some Hog1's target promoters are most robust, backupped by many activators. Second, in contrast to most laboratory strains, the widely used BY4741 strain does not induce Msn2/4 activity when the Ras/cAMP cascade is downregulated.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/química , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
13.
Mol Cell Proteomics ; 19(8): 1360-1374, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451349

RESUMO

Personalized cancer immunotherapy targeting patient-specific cancer/testis antigens (CTA) and neoantigens may benefit from large-scale tumor human leukocyte antigen (HLA) peptidome (immunopeptidome) analysis, which aims to accurately identify antigens presented by tumor cells. Although significant efforts have been invested in analyzing the HLA peptidomes of fresh tumors, it is often impossible to obtain sufficient volumes of tumor tissues for comprehensive HLA peptidome characterization. This work attempted to overcome some of these obstacles by using patient-derived xenograft tumors (PDX) in mice as the tissue sources for HLA peptidome analysis. PDX tumors provide a proxy for the expansion of the patient tumor by re-grafting them through several passages to immune-compromised mice. The HLA peptidomes of human biopsies were compared with those derived from PDX tumors. Larger HLA peptidomes were obtained from the significantly larger PDX tumors as compared with the patient biopsies. The HLA peptidomes of different PDX tumors derived from the same source tumor biopsy were very reproducible, even following subsequent passages to new naïve mice. Many CTA-derived HLA peptides were discovered, as well as several potential neoantigens/variant sequences. Taken together, the use of PDX tumors for HLA peptidome analysis serves as a highly expandable and stable source of reproducible and authentic peptidomes, opening up new opportunities for defining large HLA peptidomes when only small tumor biopsies are available. This approach provides a large source for tumor antigens identification, potentially useful for personalized immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos HLA/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biópsia , Análise por Conglomerados , Feminino , Humanos , Masculino , Camundongos , Mutação/genética
14.
J Proteomics ; 221: 103759, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32244010

RESUMO

The recognition by specific T helper cells of viral antigenic peptides complexed with HLA class II molecules exposed on the surface of antigen presenting cells is the first step of the complex cascade of immunological events that generates the protective cellular and humoral immune responses. The HLA class II-restricted helper immune response is critical in the control and the clearance of human respiratory syncytial virus (HRSV) infection, a pathogen with severe health risk in pediatric, immunocompromised and elderly populations. In this study, a mass spectrometry analysis was used to identify HRSV ligands bound to HLA-DP class II molecules present on the surface of HRSV-infected cells. Among the thousands of cellular peptides bound to HLA class II proteins in the virus-infected cells, sixty-four naturally processed viral ligands, most of them included in complex nested set of peptides, were identified bound to HLA-DP molecules. These viral ligands arose from five of six major structural HRSV proteins: attachment, fusion, matrix, nucleoprotein, and phosphoprotein. In contrast, no HLA-DP ligands were identified from polymerase protein, the largest HRSV protein that includes half of the viral proteome. These findings have important implications for analysis of the helper immune response as for antiviral vaccine design. SIGNIFICANCE: The existence of a supertype including five alleles that bind a peptide repertoire very similar make HLA-DP class II molecules an interesting target for the design of vaccines. Here, we analyze the HLA-DP-restricted peptide repertoire against the human respiratory syncytial virus, a pathogen that represents a high health risk in infected pediatric, immunocompromised and elderly populations. This repertoire is focused on major structural proteins with the exception of the viral polymerase.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Idoso , Antígenos Virais , Criança , Antígenos HLA-DP , Humanos , Peptídeos
15.
Mol Cell Proteomics ; 19(6): 994-1004, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32265295

RESUMO

The HLA-B*27:05 allele and the endoplasmic reticulum-resident aminopeptidases are strongly associated with AS, a chronic inflammatory spondyloarthropathy. This study examined the effect of ERAP2 in the generation of the natural HLA-B*27:05 ligandome in live cells. Complexes of HLA-B*27:05-bound peptide pools were isolated from human ERAP2-edited cell clones, and the peptides were identified using high-throughput mass spectrometry analyses. The relative abundance of a thousand ligands was established by quantitative tandem mass spectrometry and bioinformatics analysis. The residue frequencies at different peptide position, identified in the presence or absence of ERAP2, determined structural features of ligands and their interactions with specific pockets of the antigen-binding site of the HLA-B*27:05 molecule. Sequence alignment of ligands identified with species of bacteria associated with HLA-B*27-dependent reactive arthritis was performed. In the absence of ERAP2, peptides with N-terminal basic residues and minority canonical P2 residues are enriched in the natural ligandome. Further, alterations of residue frequencies and hydrophobicity profile at P3, P7, and PΩ positions were detected. In addition, several ERAP2-dependent cellular peptides were highly similar to protein sequences of arthritogenic bacteria, including one human HLA-B*27:05 ligand fully conserved in a protein from Campylobacter jejuni These findings highlight the pathogenic role of this aminopeptidase in the triggering of AS autoimmune disease.


Assuntos
Aminopeptidases/metabolismo , Retículo Endoplasmático/metabolismo , Antígeno HLA-B27/metabolismo , Peptídeos/metabolismo , Espondilite Anquilosante/metabolismo , Alelos , Sequência de Aminoácidos , Aminopeptidases/genética , Campylobacter jejuni/genética , Linhagem Celular , Biologia Computacional , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Técnicas de Inativação de Genes , Antígeno HLA-B27/química , Antígeno HLA-B27/genética , Ensaios de Triagem em Larga Escala , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Proteoma/metabolismo , Alinhamento de Sequência , Espondilite Anquilosante/enzimologia , Espondilite Anquilosante/genética , Espectrometria de Massas em Tandem
17.
Nat Commun ; 11(1): 896, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060274

RESUMO

Predicting the outcome of immunotherapy treatment in melanoma patients is challenging. Alterations in genes involved in antigen presentation and the interferon gamma (IFNγ) pathway play an important role in the immune response to tumors. We describe here that the overexpression of PSMB8 and PSMB9, two major components of the immunoproteasome, is predictive of better survival and improved response to immune-checkpoint inhibitors of melanoma patients. We study the mechanism underlying this connection by analyzing the antigenic peptide repertoire of cells that overexpress these subunits using HLA peptidomics. We find a higher response of patient-matched tumor infiltrating lymphocytes against antigens diferentially presented after immunoproteasome overexpression. Importantly, we find that PSMB8 and PSMB9 expression levels are much stronger predictors of melanoma patients' immune response to checkpoint inhibitors than the tumors' mutational burden. These results suggest that PSMB8 and PSMB9 expression levels can serve as important biomarkers for stratifying melanoma patients for immune-checkpoint treatment.


Assuntos
Melanoma/imunologia , Melanoma/terapia , Complexo de Endopeptidases do Proteassoma/genética , Apresentação de Antígeno , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Humanos , Imunoterapia , Interferon gama/genética , Interferon gama/imunologia , Melanoma/diagnóstico , Melanoma/genética , Prognóstico , Complexo de Endopeptidases do Proteassoma/imunologia
18.
Sci Rep ; 10(1): 312, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941973

RESUMO

Exposure to acrylamide may lead to different neurotoxic effects in humans and in experimental animals. To gain insights into this poorly understood type of neurotoxicological damage, we used a multi-omic approach to characterize the molecular changes occurring in the zebrafish brain exposed to acrylamide at metabolite, transcript and protein levels. We detected the formation of acrylamide adducts with thiol groups from both metabolites and protein residues, leading to a quasi-complete depletion of glutathione and to the inactivation of different components of the thioredoxin system. We propose that the combined loss-of-function of both redox metabolism-related systems configure a perfect storm that explains many acrylamide neurotoxic effects, like the dysregulation of genes related to microtubules, presynaptic vesicle alteration, and behavioral alterations. We consider that our mechanistical approach may help developing new treatments against the neurotoxic effects of acrylamide and of other neurotoxicants that may share its toxic mode of action.


Assuntos
Acrilamida/toxicidade , Encéfalo/metabolismo , Metaboloma/efeitos dos fármacos , Peixe-Zebra/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Oxirredução , Proteoma/análise , Espectroscopia de Prótons por Ressonância Magnética , Tiorredoxinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Sci Rep ; 9(1): 16467, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712630

RESUMO

Two essential key events in acrylamide (ACR) acute neurotoxicity are the formation of adducts with nucleophilic sulfhydryl groups on cysteine residues of selected proteins in the synaptic terminals and the depletion of the glutathione (GSx) stores in neural tissue. The use of N-acetylcysteine (NAC) has been recently proposed as a potential antidote against ACR neurotoxicity, as this chemical is not only a well-known precursor of the reduced form of glutathione (GSH), but also is an scavenger of soft electrophiles such as ACR. In this study, the suitability of 0.3 and 0.75 mM NAC to protect against the neurotoxic effect of 0.75 mM ACR has been tested in vivo in adult zebrafish. NAC provided only a mild to negligible protection against the changes induced by ACR in the motor function, behavior, transcriptome and proteome. The permeability of NAC to cross blood-brain barrier (BBB) was assessed, as well as the ACR-scavenging activity and the gamma-glutamyl-cysteine ligase (γ-GCL) and acylase I activities. The results show that ACR not only depletes GSx levels but also inhibits it synthesis from NAC/cysteine, having a dramatic effect over the glutathione system. Moreover, results indicate a very low NAC uptake to the brain, probably by a combination of low BBB permeability and high deacylation of NAC during the intestinal absorption. These results strongly suggest that the use of NAC is not indicated in ACR acute neurotoxicity treatment.


Assuntos
Acetilcisteína/farmacologia , Acrilamida/toxicidade , Sequestradores de Radicais Livres/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Acilação , Animais , Antioxidantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade da Membrana Celular , Glutationa/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Proteoma/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Peixe-Zebra/metabolismo
20.
Cell ; 179(1): 219-235.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522890

RESUMO

Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.


Assuntos
Heterogeneidade Genética/efeitos da radiação , Melanoma/genética , Melanoma/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Raios Ultravioleta/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos do Interstício Tumoral , Melanoma/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Mutação/efeitos da radiação , Filogenia , Neoplasias Cutâneas/mortalidade , Taxa de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA