Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 35(5): 633-637, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656148

RESUMO

Zirconium-89 is the most widely used radioisotope for immunoPET because its physical half-life (78.2 h) suits the one of antibodies. Desferrioxamine B (DFO) is the standard chelator for the complexation of zirconium(IV), and its bifunctional version, containing a phenylisothiocyanate function, is the most commonly used for the conjugation of DFO to proteins. However, preliminary results have shown that the thiourea link obtained from the conjugation of isothiocyanate and lysines is sensitive to the ionizing radiation generated by the radioisotope, leading to the rupture of the link and the release of the chelator/radiometal complex. This radiolysis phenomenon could produce nonspecific signal and prevent the detection of bone metastasis, as free zirconium accumulates into the bones. The aim of this work was to study the stability of a selection of conjugation linkers in 89Zr-labeled immunoconjugates. We have synthesized several DFO-based bifunctional chelators appended with an isothiocyanate moiety, a bicyclononyne, or a squaramate ester. Two antibodies (trastuzumab and rituximab) were conjugated and radiolabeled with zirconium-89. The effect of increasing activities of zirconium-89 on the integrity of the bioconjugate bearing thiourea links was evaluated as well as the impact of the presence of a radioprotectant. The stability of the radiolabeled antibodies was studied over 7 days in PBS and human plasma. Radioconjugates' integrity was evaluated using iTLC and size-exclusion chromatography. This study shows that the nature of the linker between the chelator and biomolecule can have a strong impact on the stability of the 89Zr-labeled conjugates, as well as on the aggregation of the conjugates.


Assuntos
Imunoconjugados , Isotiocianatos , Radioisótopos , Zircônio , Zircônio/química , Imunoconjugados/química , Isotiocianatos/química , Radioisótopos/química , Quelantes/química , Humanos , Desferroxamina/química
2.
Bioconjug Chem ; 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971386

RESUMO

Among all approaches in molecular imaging, the combination of near-infrared fluorescence imaging (NIRF) with radioisotopic imaging (PET or SPECT) allows one to benefit from the advantages of each of the imaging techniques, which are very complementary and of comparable sensitivity. To this end, the construction of monomolecular multimodal probes (MOMIP) has made it possible to combine the two imaging modalities within the same molecule, thus limiting the number of bioconjugation sites and yielding more homogeneous conjugates compared with those prepared through sequential conjugation. However, in order to optimize the bioconjugation strategy and, at the same time, the pharmacokinetic and biodistribution properties of the resulting imaging agent, a site-specific approach may be preferred. To further investigate this hypothesis, random and glycan-based site-specific bioconjugation approaches were compared thanks to a SPECT/NIRF bimodal probe based on an aza-BODIPY fluorophore. The overall experiments conducted in vitro and in vivo on HER2-expressing tumors demonstrated a clear superiority of the site-specific approach to improve affinity, specificity, and biodistribution of the bioconjugates.

3.
Bioconjug Chem ; 33(3): 530-540, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230093

RESUMO

Because positron emission tomography (PET) and optical imaging are very complementary, the combination of these two imaging modalities is very enticing in the oncology field. Such bimodal imaging generally relies on imaging agents bearing two different imaging reporters. In the bioconjugation field, this is mainly performed by successive random conjugations of the two reporters on the protein vector, but these random conjugations can alter the vector properties. In this study, we aimed at abrogating the heterogeneity of the bimodal imaging immunoconjugate and mitigating the impact of multiple random conjugations. A trivalent platform bearing a DFO chelator for 89Zr labeling, a NIR fluorophore, IRDye800CW, and a bioconjugation handle was synthesized. This bimodal probe was site-specifically grafted to trastuzumab via glycan engineering. This new bimodal immunoconjugate was then investigated in terms of radiochemistry, in vitro and in vivo, and compared to the clinically relevant random equivalent. In vitro and in vivo, our strategy provides several improvements over the current clinical standard. The combination of site-specific conjugation with the monomolecular platform reduced the heterogeneity of the final immunoconjugate, improved the resistance of the fluorophore toward radiobleaching, and reduced the nonspecific uptake in the spleen and liver compared to the standard random immunoconjugate. To conclude, the strategy developed is very promising for the synthesis of better defined dual-labeled immunoconjugates, although there is still room for improvement. Importantly, this conjugation strategy is highly modular and could be used for the synthesis of a wide range of dual-labeled immunoconjugates.


Assuntos
Imunoconjugados , Neoplasias , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Imunoconjugados/química , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Distribuição Tecidual , Zircônio/química
4.
Bioconjug Chem ; 32(7): 1255-1262, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835770

RESUMO

Delta-like ligand 3 (DLL3) is a therapeutic target for the treatment of small cell lung cancer, neuroendocrine prostate cancer, and isocitrate dehydrogenase mutant glioma. In the clinic, DLL3-targeted 89Zr-immunoPET has the potential to aid in the assessment of disease burden and facilitate the selection of patients suitable for therapies that target the antigen. The overwhelming majority of 89Zr-labeled radioimmunoconjugates are synthesized via the random conjugation of desferrioxamine (DFO) to lysine residues within the immunoglobulin. While this approach is admittedly facile, it can produce heterogeneous constructs with suboptimal in vitro and in vivo behavior. In an effort to circumvent these issues, we report the development and preclinical evaluation of site-specifically labeled radioimmunoconjugates for DLL3-targeted immunoPET. To this end, we modified a cysteine-engineered variant of the DLL3-targeting antibody SC16-MB1 with two thiol-reactive variants of DFO: one bearing a maleimide moiety (Mal-DFO) and the other containing a phenyloxadiazolyl methyl sulfone group (PODS-DFO). In an effort to obtain immunoconjugates with a DFO-to-antibody ratio (DAR) of 2, we explored both the reduction of the antibody with tris(2-carboxyethyl) phosphine (TCEP) as well as the use of a combination of glutathione and arginine as reducing and stabilizing agents, respectively. While exerting control over the DAR of the immunoconjugate proved cumbersome using TCEP, the use of glutathione and arginine enabled the selective reduction of the engineered cysteines and thus the formation of homogeneous immunoconjugates. A head-to-head comparison of the resulting 89Zr-radioimmunoconjugates in mice bearing DLL3-expressing H82 xenografts revealed no significant differences in tumoral uptake and showed comparable radioactivity concentrations in most healthy nontarget organs. However, 89Zr-DFOPODS-DAR2SC16-MB1 produced 30% lower uptake (3.3 ± 0.5 %ID/g) in the kidneys compared to 89Zr-DFOMal-DAR2SC16-MB1 (4.7 ± 0.5 %ID/g). In addition, H82-bearing mice injected with a 89Zr-labeled isotype-control radioimmunoconjugate synthesized using PODS exhibited ∼40% lower radioactivity in the kidneys compared to mice administered its maleimide-based counterpart. Taken together, these results demonstrate the improved in vivo performance of the PODS-based radioimmunoconjugate and suggest that a stable, well-defined DAR2 radiopharmaceutical may be suitable for the clinical immunoPET of DLL3-expressing cancers.


Assuntos
Imunoconjugados/administração & dosagem , Imunoconjugados/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/química
5.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098299

RESUMO

Pretargeting is widely explored in immunoPET as a strategy to reduce radiation exposure of non-target organs and allow the use of short-lived radionuclides that would not otherwise be compatible with the slow pharmacokinetic profiles of antibodies. Here we investigate a pretargeting strategy based on gallium-68 and the chelator THPMe as a high-affinity pair capable of combining in vivo. After confirming the ability of THPMe to bind 68Ga in vivo at low concentrations, the bifunctional THPMe-NCS was conjugated to a humanised huA33 antibody targeting the A33 glycoprotein. Imaging experiments performed in nude mice bearing A33-positive SW1222 colorectal cancer xenografts compared pretargeting (100 µg of THPMe-NCS-huA33, followed after 24 h by 8-10 MBq of 68Ga3+) with both a directly labelled radioimmunoconjugate (89Zr-DFO-NCS-huA33, 88 µg, 7 MBq) and a 68Ga-only negative control (8-10 MBq of 68Ga3+). Imaging was performed 25 h after antibody administration (1 h after 68Ga3+ administration for negative control). No difference between pretargeting and the negative control was observed, suggesting that pretargeting via metal chelation is not feasible using this model. However, significant accumulation of "unchelated" 68Ga3+ in the tumour was found (12.9 %ID/g) even without prior administration of THPMe-NCS-huA33, though tumour-to-background contrast was impaired by residual activity in the blood. Therefore, the 68Ga-only experiment was repeated using THPMe (20 µg, 1 h after 68Ga3+ administration) to clear circulating 68Ga3+, producing a three-fold improvement of the tumour-to-blood activity concentration ratio. Although preliminary, these results highlight the potential of THPMe as a 68Ga clearing agent in imaging applications with gallium citrate.


Assuntos
Anticorpos/metabolismo , Quelantes/farmacocinética , Imunoconjugados/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Anticorpos/química , Linhagem Celular Tumoral , Quelantes/química , Feminino , Radioisótopos de Gálio/química , Radioisótopos de Gálio/metabolismo , Radioisótopos de Gálio/farmacocinética , Xenoenxertos , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Taxa de Depuração Metabólica , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
6.
Theranostics ; 10(4): 1746-1757, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042334

RESUMO

Rationale: The overwhelming majority of radioimmunoconjugates are produced via random conjugation methods predicated on attaching bifunctional chelators to the lysines of antibodies. However, this approach inevitably produces poorly defined and heterogeneous immunoconjugates because antibodies have several lysines distributed throughout their structure. To circumvent this issue, we have previously developed a chemoenzymatic bioconjugation strategy that site-specifically appends cargoes to the biantennary heavy chain glycans attached to CH2 domains of the immunoglobulin's Fc region. In the study at hand, we explore the effects of this approach to site-specific bioconjugation on the Fc receptor binding and in vivo behavior of radioimmunoconjugates. Methods: We synthesized three desferrioxamine (DFO)-labeled immunoconjugates based on the HER2-targeting antibody pertuzumab: one using random bioconjugation methods (DFO-nsspertuzumab) and two using variants of our chemoenzymatic protocol (DFO-sspertuzumab-EndoS and DFO-sspertuzumab-ßGal). Subsequently, we characterized these constructs and evaluated their ability to bind HER2, human FcγRI (huFcγRI), and mouse FcγRI (muFcγRI). After radiolabeling the immunoconjugates with zirconium-89, we conducted PET imaging and biodistribution studies in two different mouse models of HER2-expressing breast cancer. Results: MALDI-ToF and SDS-PAGE analysis confirmed the site-specific nature of the bioconjugation, and flow cytometry and surface plasmon resonance (SPR) revealed that all three immunoconjugates bind HER2 as effectively as native pertuzumab. Critically, however, SPR experiments also illuminated that DFO-sspertuzumab-EndoS possesses an attenuated binding affinity for huFcγRI (17.4 ± 0.3 nM) compared to native pertuzumab (4.7 ± 0.2 nM), DFO-nsspertuzumab (4.1 ± 0.1 nM), and DFO-sspertuzumab-ßGal (4.7 ± 0.2 nM). ImmunoPET and biodistribution experiments in athymic nude mice bearing HER2-expressing BT474 human breast cancer xenografts yielded no significant differences in the in vivo behavior of the radioimmunoconjugates. Yet experiments in tumor-bearing humanized NSG mice revealed that 89Zr-DFO-sspertuzumab-EndoS produces higher activity concentrations in the tumor (111.8 ± 39.9 %ID/g) and lower activity concentrations in the liver and spleen (4.7 ± 0.8 %ID/g and 13.1 ± 4.0 %ID/g, respectively) than its non-site-specifically labeled cousin, a phenomenon we believe stems from the altered binding of the former to huFcγRI. Conclusion: These data underscore that this approach to site-specific bioconjugation not only produces more homogeneous and well-defined radioimmunoconjugates than traditional methods but may also improve their in vivo performance in mouse models by reducing binding to FcγRI.


Assuntos
Neoplasias da Mama/metabolismo , Polissacarídeos/química , Compostos Radiofarmacêuticos/farmacocinética , Receptores de IgG/metabolismo , Animais , Anticorpos/efeitos dos fármacos , Anticorpos/imunologia , Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Desferroxamina/química , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos , Receptor ErbB-2/metabolismo , Receptores de IgG/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio
7.
Nucl Med Biol ; 82-83: 49-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32000047

RESUMO

INTRODUCTION: Lately, zirconium-89 has shown great promise as a radionuclide for PET applications of long circulating biomolecules. Here, the design and synthesis of protracted and long-lived GLP-1 receptor agonists conjugated to desferrioxamine and labelled with zirconium-89 is presented with the purpose of studying their in vivo distribution by PET imaging. The labelled conjugates were evaluated and compared to a non-labelled GLP-1 receptor agonist in both in vitro and in vivo assays to certify that the modification did not significantly alter the peptides' structure or function. Finally, the zirconium-89 labelled peptides were employed in PET imaging, providing visual verification of their in vivo biodistribution. METHODS: The evaluation of the radiolabelled peptides and comparison to their non-labelled parent peptide was performed by in vitro assays measuring binding and agonistic potency to the GLP-1 receptor, physicochemical studies aiming at elucidating change in peptide structure upon bioconjugation and labelling as well as an in vivo food in-take study illustrating the compounds' pharmacodynamic properties. The biodistribution of the labelled GLP-1 analogues was determined by ex vivo biodistribution and in vivo PET imaging. RESULTS: The results indicate that it is surprisingly feasible to design and synthesize a protracted, zirconium-89 labelled GLP-1 receptor agonist without losing in vitro potency or affinity as compared to a non-labelled parent peptide. Physicochemical properties as well as pharmacodynamic properties are also maintained. The biodistribution in rats shows high accumulation of radiolabelled peptide in well-perfused organs such as the liver, kidney, heart and lungs. The PET imaging study confirmed the findings from the biodistribution study with a significant high uptake in kidneys and presence of activity in liver, heart and larger blood vessels. CONCLUSIONS AND ADVANCES IN KNOWLEDGE: This initial study indicates the potential to monitor the in vivo distribution of long-circulating incretin hormones using zirconium-89 based PET.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos/química , Peptídeos/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Zircônio/química , Sequência de Aminoácidos , Técnicas de Química Sintética , Desenho de Fármacos , Meia-Vida , Marcação por Isótopo , Peptídeos/síntese química , Peptídeos/farmacocinética , Radioquímica , Distribuição Tecidual
9.
Eur J Nucl Med Mol Imaging ; 46(9): 1966-1977, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161258

RESUMO

PURPOSE: Currently, the most commonly used chelator for labelling antibodies with 89Zr for immunoPET is desferrioxamine B (DFO). However, preclinical studies have shown that the limited in vivo stability of the 89Zr-DFO complex results in release of 89Zr, which accumulates in mineral bone. Here we report a novel chelator DFOcyclo*, a preorganized extended DFO derivative that enables octacoordination of the 89Zr radiometal. The aim was to compare the in vitro and in vivo stability of [89Zr]Zr-DFOcyclo*, [89Zr]Zr-DFO* and [89Zr]Zr-DFO. METHODS: The stability of 89Zr-labelled chelators alone and after conjugation to trastuzumab was evaluated in human plasma and PBS, and in the presence of excess EDTA or DFO. The immunoreactive fraction, IC50, and internalization rate of the conjugates were evaluated using HER2-expressing SKOV-3 cells. The in vivo distribution was investigated in mice with subcutaneous HER2+ SKOV-3 or HER2- MDA-MB-231 xenografts by PET/CT imaging and quantitative ex vivo tissue analyses 7 days after injection. RESULTS: 89Zr-labelled DFO, DFO* and DFOcyclo* were stable in human plasma for up to 7 days. In competition with EDTA, DFO* and DFOcyclo* showed higher stability than DFO. In competition with excess DFO, DFOcyclo*-trastuzumab was significantly more stable than the corresponding DFO and DFO* conjugates (p < 0.001). Cell binding and internalization were similar for the three conjugates. In in vivo studies, HER2+ SKOV-3 tumour-bearing mice showed significantly lower bone uptake (p < 0.001) 168 h after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (femur 1.5 ± 0.3%ID/g, knee 2.1 ± 0.4%ID/g) or [89Zr]Zr-DFO*-trastuzumab (femur 2.0 ± 0.3%ID/g, knee 2.68 ± 0.4%ID/g) than after injection with [89Zr]Zr-DFO-trastuzumab (femur 4.5 ± 0.6%ID/g, knee 7.8 ± 0.6%ID/g). Blood levels, tumour uptake and uptake in other organs were not significantly different at 168 h after injection. HER2- MDA-MB-231 tumour-bearing mice showed significantly lower tumour uptake (p < 0.001) after injection with [89Zr]Zr-DFOcyclo*-trastuzumab (16.2 ± 10.1%ID/g) and [89Zr]Zr-DFO-trastuzumab (19.6 ± 3.2%ID/g) than HER2+ SKOV-3 tumour-bearing mice (72.1 ± 14.6%ID/g and 93.1 ± 20.9%ID/g, respectively), while bone uptake was similar. CONCLUSION: 89Zr-labelled DFOcyclo* and DFOcyclo*-trastuzumab showed higher in vitro and in vivo stability than the current commonly used 89Zr-DFO-trastuzumab. DFOcyclo* is a promising candidate to become the new clinically used standard chelator for 89Zr immunoPET.


Assuntos
Desferroxamina/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos/química , Zircônio/química , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Desferroxamina/farmacocinética , Feminino , Humanos , Camundongos , Distribuição Tecidual
10.
J Vis Exp ; (145)2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30907883

RESUMO

Maleimide-bearing bifunctional probes have been employed for decades for the site-selective modification of thiols in biomolecules, especially antibodies. Yet maleimide-based conjugates display limited stability in vivo because the succinimidyl thioether linkage can undergo a retro-Michael reaction. This, of course, can lead to the release of the radioactive payload or its exchange with thiol-bearing biomolecules in circulation. Both of these processes can produce elevated activity concentrations in healthy organs as well as decreased activity concentrations in target tissues, resulting in reduced imaging contrast and lower therapeutic ratios. In 2018, we reported the creation of a modular, stable, and easily accessible phenyloxadiazolyl methyl sulfone reagent - dubbed 'PODS' - as a platform for thiol-based bioconjugations. We have clearly demonstrated that PODS-based site-selective bioconjugations reproducibly and robustly create homogenous, well-defined, highly immunoreactive, and highly stable radioimmunoconjugates. Furthermore, preclinical experiments in murine models of colorectal cancer have shown that these site-selectively labeled radioimmunoconjugates exhibit far superior in vivo performance compared to radiolabeled antibodies synthesized via maleimide-based conjugations. In this protocol, we will describe the four-step synthesis of PODS, the creation of a bifunctional PODS-bearing variant of the ubiquitous chelator DOTA (PODS-DOTA), and the conjugation of PODS-DOTA to the HER2-targeting antibody trastuzumab.


Assuntos
Imunoconjugados/metabolismo , Reagentes de Sulfidrila/síntese química , Animais , Humanos , Maleimidas/química , Camundongos , Reagentes de Sulfidrila/química , Trastuzumab/farmacologia
11.
J Nucl Med ; 60(8): 1174-1182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733320

RESUMO

Antibodies are promising vectors for PET imaging. However, the high uptake of radioimmunoconjugates in nontarget tissues such as the liver and spleen hampers their performance as radiotracers. This off-target uptake can lead to suboptimal tumor-to-background activity concentration ratios, decreasing the contrast of images and reducing their diagnostic utility. A possible cause of this uptake is the sequestration of radioimmunoconjugates by immune cells bearing Fc-γ-receptors (FcγR) that bind to the Fc regions of antibodies. Methods: Since the heavy chain glycans influence the affinity of FcγR for the Fc domain, we set out to investigate whether radioimmunoconjugates with truncated glycans would exhibit altered binding to FcγRI and, in turn, improved in vivo performance. Using the HER2-targeting antibody trastuzumab, we synthesized a series of desferrioxamine-bearing immunoconjugates with differing glycosylation states and interrogated their FcγRI binding via surface plasmon resonance, enzyme-linked immunosorbent assay, and flow cytometry. Furthermore, we labeled these immunoconjugates with 89Zr and explored their biodistribution in athymic nude, NSG, and humanized NSG mice bearing human epidermal growth factor receptor 2-expressing human breast cancer xenografts. Results: We observed a strong correlation between the impaired in vitro FcγRI binding of deglycosylated immunoconjugates and significant decreases in the in vivo off-target uptake of the corresponding 89Zr-labeled radioimmunoconjugates (i.e., liver activity concentrations are reduced by ∼3.5-fold in humanized NSG mice). These reductions in off-target uptake were accompanied by concomitant increases in the tumoral activity concentrations of the glycoengineered radioimmunoconjugates, ultimately yielding improved tumor-to-healthy organ contrast and higher quality PET images. Conclusion: Our findings suggest that the deglycosylation of antibodies represents a facile strategy for improving the quality of immuno-PET in animal models as well as in certain patient populations.


Assuntos
Imunoconjugados/química , Tomografia por Emissão de Pósitrons , Receptores de IgG/química , Animais , Neoplasias da Mama/diagnóstico por imagem , Linhagem Celular Tumoral , Desferroxamina/química , Feminino , Glicosilação , Humanos , Imunoglobulina G/química , Técnicas In Vitro , Cinética , Camundongos , Camundongos Nus , Transplante de Neoplasias , Compostos Radiofarmacêuticos , Receptor ErbB-2/metabolismo , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície , Distribuição Tecidual , Trastuzumab/química , Zircônio/química
12.
Bioconjug Chem ; 29(4): 1364-1372, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29509393

RESUMO

Maleimide-bearing bifunctional chelators have been used extensively for the site-selective bioconjugation and radiolabeling of peptides and proteins. However, bioconjugates obtained using these constructs inevitably suffer from limited stability in vivo, a trait that translates into suboptimal activity concentrations in target tissues and higher uptake levels in healthy, nontarget tissues. To circumvent this issue, phenyloxadiazolyl methylsulfones have previously been reported as alternatives to maleimides for thiol-based ligations, but these constructs have scarcely been used in the field of radiochemistry. In this report, we describe the synthesis of two thiol-reactive bifunctional chelators for 89Zr and 177Lu based on a new, easy-to-make phenyloxadiazolyl methylsulfone reagent, PODS. Radioimmunoconjugates created using these novel bifunctional chelators displayed in vitro stability that was higher than that of their maleimide-derived cousins. More importantly, positron emission tomography imaging in murine models of cancer revealed that a 89Zr-labeled radioimmunoconjugate created using a PODS-bearing bifunctional chelator produced a rate of uptake in nontarget tissues that is significantly lower than that of its analogous maleimide-based counterpart.


Assuntos
Quelantes/química , Imunoconjugados/química , Lutécio/química , Mesilatos/química , Radioisótopos/química , Compostos de Sulfidrila/química , Zircônio/química , Animais , Quelantes/farmacocinética , Humanos , Imunoconjugados/farmacocinética , Lutécio/farmacocinética , Mesilatos/farmacocinética , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/farmacocinética , Zircônio/farmacocinética
13.
Mol Pharm ; 15(3): 892-898, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29356543

RESUMO

The conjugation of antibodies with cytotoxic drugs can alter their in vivo pharmacokinetics. As a result, the careful assessment of the in vivo behavior, and specifically the tumor-targeting properties, of antibody-drug conjugates represents a crucial step in their development. In order to facilitate this process, we have created a methodology that facilitates the dual labeling of an antibody with both a toxin and a radionuclide for positron emission tomography (PET). To minimize the impact of these modifications, this chemoenzymatic approach leverages strain-promoted azide-alkyne click chemistry to graft both cargoes to the heavy chain glycans of the immuoglobulin's Fc domain. As a proof-of-concept, a HER2-targeting trastuzumab immunoconjugate was created bearing both a monomethyl auristatin E (MMAE) toxin as well as the long-lived positron-emitting radiometal 89Zr ( t1/2 ≈ 3.3 days). Both the tumor targeting and therapeutic efficacy of the 89Zr-trastuzumab-MMAE immunoconjugate were validated in vivo using a murine model of HER2-expressing breast cancer. The site-specifically dual-labeled construct enabled the clear visualization of tumor tissue via PET imaging, producing tumoral uptake of ∼70%ID/g. Furthermore, a longitudinal therapy study revealed that the immunoconjugate exerts significant antitumor activity, leading to a >90% reduction in tumor volume over the course of 20 days.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Imunoconjugados/administração & dosagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Química Click , Desenvolvimento de Medicamentos , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/farmacocinética , Camundongos , Camundongos Nus , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-2/antagonistas & inibidores , Distribuição Tecidual , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Microtomografia por Raio-X/métodos
14.
J Med Chem ; 60(19): 8201-8217, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28857566

RESUMO

Pretargeting offers a way to enhance target specificity while reducing off-target radiation dose to healthy tissue during payload delivery. We recently reported the development of an 18F-based pretargeting strategy predicated on the inverse electron demand Diels-Alder reaction as well as the use of this approach to visualize pancreatic tumor tissue in vivo as early as 1 h postinjection. Herein, we report a comprehensive structure: pharmacokinetic relationship study of a library of 25 novel radioligands that aims to identify radiotracers with optimal pharmacokinetic and dosimetric properties. This investigation revealed key relationships between molecular structure and in vivo behavior and produced two lead candidates exhibiting rapid tumor targeting with high target-to-background activity concentration ratios at early time points. We believe this knowledge to be of high value for the design and clinical translation of next-generation pretargeting agents for the diagnosis and treatment of disease.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Animais , Descoberta de Drogas , Radioisótopos de Flúor , Humanos , Tomografia por Emissão de Pósitrons , Radiometria , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Theranostics ; 6(12): 2267-2277, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27924162

RESUMO

The complementary nature of positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging makes the development of strategies for the multimodal PET/NIRF imaging of cancer a very enticing prospect. Indeed, in the context of colorectal cancer, a single multimodal PET/NIRF imaging agent could be used to stage the disease, identify candidates for surgical intervention, and facilitate the image-guided resection of the disease. While antibodies have proven to be highly effective vectors for the delivery of radioisotopes and fluorophores to malignant tissues, the use of radioimmunoconjugates labeled with long-lived nuclides such as 89Zr poses two important clinical complications: high radiation doses to the patient and the need for significant lag time between imaging and surgery. In vivo pretargeting strategies that decouple the targeting vector from the radioactivity at the time of injection have the potential to circumvent these issues by facilitating the use of positron-emitting radioisotopes with far shorter half-lives. Here, we report the synthesis, characterization, and in vivo validation of a pretargeted strategy for the multimodal PET and NIRF imaging of colorectal carcinoma. This approach is based on the rapid and bioorthogonal ligation between a trans-cyclooctene- and fluorophore-bearing immunoconjugate of the huA33 antibody (huA33-Dye800-TCO) and a 64Cu-labeled tetrazine radioligand (64Cu-Tz-SarAr). In vivo imaging experiments in mice bearing A33 antigen-expressing SW1222 colorectal cancer xenografts clearly demonstrate that this approach enables the non-invasive visualization of tumors and the image-guided resection of malignant tissue, all at only a fraction of the radiation dose created by a directly labeled radioimmunoconjugate. Additional in vivo experiments in peritoneal and patient-derived xenograft models of colorectal carcinoma reinforce the efficacy of this methodology and underscore its potential as an innovative and useful clinical tool.


Assuntos
Anticorpos Antineoplásicos/administração & dosagem , Carcinoma/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem , Radioisótopos de Cobre/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Imagem Óptica/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Anticorpos Antineoplásicos/química , Radioisótopos de Cobre/química , Modelos Animais de Doenças , Corantes Fluorescentes/química , Xenoenxertos , Camundongos
16.
Bioconjug Chem ; 27(12): 2791-2807, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27787983

RESUMO

The advent of click chemistry has had a profound influence on almost all branches of chemical science. This is particularly true of radiochemistry and the synthesis of agents for positron emission tomography (PET), single photon emission computed tomography (SPECT), and targeted radiotherapy. The selectivity, ease, rapidity, and modularity of click ligations make them nearly ideally suited for the construction of radiotracers, a process that often involves working with biomolecules in aqueous conditions with inexorably decaying radioisotopes. In the following pages, our goal is to provide a broad overview of the first 10 years of research at the intersection of click chemistry and radiochemistry. The discussion will focus on four areas that we believe underscore the critical advantages provided by click chemistry: (i) the use of prosthetic groups for radiolabeling reactions, (ii) the creation of coordination scaffolds for radiometals, (iii) the site-specific radiolabeling of proteins and peptides, and (iv) the development of strategies for in vivo pretargeting. Particular emphasis will be placed on the four most prevalent click reactions-the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), the strain-promoted azide-alkyne cycloaddition (SPAAC), the inverse electron demand Diels-Alder reaction (IEDDA), and the Staudinger ligation-although less well-known click ligations will be discussed as well. Ultimately, it is our hope that this review will not only serve to educate readers but will also act as a springboard, inspiring synthetic chemists and radiochemists alike to harness click chemistry in even more innovative and ambitious ways as we embark upon the second decade of this fruitful collaboration.


Assuntos
Química Click/métodos , Radioquímica/métodos , Animais , Catálise , Cobre/química , Reação de Cicloadição , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Marcação por Isótopo , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Peptídeos/química
17.
Bioconjug Chem ; 27(8): 1789-95, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27356886

RESUMO

In recent years, both site-specific bioconjugation techniques and bioorthogonal pretargeting strategies have emerged as exciting technologies with the potential to improve the safety and efficacy of antibody-based nuclear imaging. In the work at hand, we have combined these two approaches to create a pretargeted PET imaging strategy based on the rapid and bioorthogonal inverse electron demand Diels-Alder reaction between a (64)Cu-labeled tetrazine radioligand ((64)Cu-Tz-SarAr) and a site-specifically modified huA33-trans-cyclooctene immunoconjugate ((ss)huA33-PEG12-TCO). A bioconjugation strategy that harnesses enzymatic transformations and strain-promoted azide-alkyne click chemistry was used to site-specifically append PEGylated TCO moieties to the heavy chain glycans of the colorectal cancer-targeting huA33 antibody. Preclinical in vivo validation studies were performed in athymic nude mice bearing A33 antigen-expressing SW1222 human colorectal carcinoma xenografts. To this end, mice were administered (ss)huA33-PEG12-TCO via tail vein injection and-following accumulation intervals of 24 or 48 h-(64)Cu-Tz-SarAr. PET imaging and biodistribution studies reveal that this strategy clearly delineates tumor tissue as early as 1 h post-injection (6.7 ± 1.7%ID/g at 1 h p.i.), producing images with excellent contrast and high tumor-to-background activity concentration ratios (tumor:muscle = 21.5 ± 5.6 at 24 h p.i.). Furthermore, dosimetric calculations illustrate that this pretargeting approach produces only a fraction of the overall effective dose (0.0214 mSv/MBq; 0.079 rem/mCi) of directly labeled radioimmunoconjugates. Ultimately, this method effectively facilitates the high contrast pretargeted PET imaging of colorectal carcinoma using a site-specifically modified immunoconjugate.


Assuntos
Imunoconjugados/química , Tomografia por Emissão de Pósitrons/métodos , Alcinos/química , Animais , Azidas/química , Sítios de Ligação , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Radioisótopos de Cobre , Humanos , Imunoconjugados/metabolismo , Imunoconjugados/farmacocinética , Marcação por Isótopo , Camundongos , Distribuição Tecidual
18.
Mol Imaging Biol ; 18(1): 1-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26754790

RESUMO

Due to their remarkable selectivity and specificity for cancer biomarkers, immunoconjugates have emerged as extremely promising vectors for the delivery of diagnostic radioisotopes and fluorophores to malignant tissues. Paradoxically, however, these tools for precision medicine are synthesized in a remarkably imprecise way. Indeed, the vast majority of immunoconjugates are created via the random conjugation of bifunctional probes (e.g., DOTA-NCS) to amino acids within the antibody (e.g., lysines). Yet antibodies have multiple copies of these residues throughout their macromolecular structure, making control over the location of the conjugation reaction impossible. This lack of site specificity can lead to the formation of poorly defined, heterogeneous immunoconjugates with suboptimal in vivo behavior. Over the past decade, interest in the synthesis and development of site-specifically labeled immunoconjugates--both antibody-drug conjugates as well as constructs for in vivo imaging--has increased dramatically, and a number of reports have suggested that these better defined, more homogeneous constructs exhibit improved performance in vivo compared to their randomly modified cousins. In this two-part review, we seek to provide an overview of the various methods that have been developed to create site-specifically modified immunoconjugates for positron emission tomography, single photon emission computed tomography, and fluorescence imaging. We will begin with an introduction to the structure of antibodies and antibody fragments. This is followed by the core of the work: sections detailing the four different approaches to site-specific modification strategies based on cysteine residues, glycans, peptide tags, and unnatural amino acids. These discussions will be divided into two installments: cysteine residues and glycans will be detailed in Part 1 of the review, while peptide tags and unnatural amino acids will be addressed in Part 2. Ultimately, we sincerely hope that this review fosters interest and enthusiasm for site-specific immunoconjugates within the nuclear medicine and molecular imaging communities.


Assuntos
Cisteína/metabolismo , Imunoconjugados/metabolismo , Imagem Molecular/métodos , Polissacarídeos/metabolismo , Coloração e Rotulagem , Animais , Humanos , Imunoglobulinas/química
19.
Mol Imaging Biol ; 18(2): 153-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26754791

RESUMO

Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification strategies covered in both parts of the review and offer a brief discussion of the overall direction of the field.


Assuntos
Aminoácidos/metabolismo , Imunoconjugados/metabolismo , Imagem Molecular/métodos , Peptídeos/metabolismo , Aminoácidos/química , Animais , Humanos , Imunoconjugados/química , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Peptídeos/química
20.
J Mater Chem B ; 1(34): 4306-4312, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261027

RESUMO

The facile synthesis of functionalized luminescent nanoparticles from LnL3 lanthanide complexes is described. The luminescence properties of the lanthanide chelates and of the corresponding nanohybrids are reported and compared. For a further application in bioimaging, the cytotoxicity of the nano-objects was investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA