Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 5(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151625

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.


Assuntos
Cinesinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Cinesinas/genética , Cinesinas/metabolismo , Mitose/genética , Linhagem Celular , Pontos de Checagem da Fase M do Ciclo Celular
2.
J Med Chem ; 65(6): 4972-4990, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35286090

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer that results from errors in chromosome segregation during mitosis. Targeting of CIN-associated vulnerabilities is an emerging therapeutic strategy in drug development. KIF18A, a mitotic kinesin, has been shown to play a role in maintaining bipolar spindle integrity and promotes viability of CIN cancer cells. To explore the potential of KIF18A, a series of inhibitors was identified. Optimization of an initial hit led to the discovery of analogues that could be used as chemical probes to interrogate the role of KIF18A inhibition. Compounds 23 and 24 caused significant mitotic arrest in vivo, which was sustained for 24 h. This would be followed by cell death either in mitosis or in the subsequent interphase. Furthermore, photoaffinity labeling experiments reveal that this series of inhibitors binds at the interface of KIF18A and tubulin. This study represents the first disclosure of KIF18A inhibitors with in vivo activity.


Assuntos
Cinesinas , Neoplasias , Morte Celular , Humanos , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
Bioorg Med Chem Lett ; 30(14): 127240, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527542

RESUMO

The (Z)-fluoro-olefin amide bioisosteric replacement is an effective tool for addressing various shortcomings of the parent amide. In an effort to fine tune ADME properties of BACE1 preclinical candidate AM-6494, a series of structurally distinct (Z)-fluoro-olefin containing analogs was developed that culminated in compound 15. Herein, we detail design considerations, synthetic challenges, structure activity relationship (SAR) studies, and in vivo properties of an advanced compound in this novel series of BACE1 inhibitors.


Assuntos
Alcenos/farmacologia , Amidas/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Alcenos/síntese química , Alcenos/química , Amidas/síntese química , Amidas/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Hidrocarbonetos Fluorados/síntese química , Hidrocarbonetos Fluorados/química , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
4.
J Med Chem ; 63(5): 2263-2281, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589043

RESUMO

ß-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is an aspartyl protease that plays a key role in the production of amyloid ß (Aß) in the brain and has been extensively pursued as a target for the treatment of Alzheimer's disease (AD). BACE2, an aspartyl protease that is structurally related to BACE1, has been recently reported to be involved in melanosome maturation and pigmentation. Herein, we describe the development of a series of cyclopropylthiazines as potent and orally efficacious BACE1 inhibitors. Lead optimization led to the identification of 20, a molecule with biochemical IC50 BACE2/BACE1 ratio of 47. Administration of 20 resulted in no skin/fur color change in a 13-day mouse hypopigmentation study and demonstrated robust and sustained reduction of CSF and brain Aß40 levels in rat and monkey pharmacodynamic models. On the basis of a compelling data package, 20 (AM-6494) was advanced to preclinical development.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ciclopropanos/farmacologia , Inibidores Enzimáticos/farmacologia , Tiazinas/farmacologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ciclopropanos/química , Ciclopropanos/farmacocinética , Ciclopropanos/uso terapêutico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos , Modelos Moleculares , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fragmentos de Peptídeos/metabolismo , Ratos Sprague-Dawley , Tiazinas/química , Tiazinas/farmacocinética , Tiazinas/uso terapêutico
5.
J Med Chem ; 63(1): 52-65, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820981

RESUMO

KRASG12C has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRASG12C to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRASG12C inhibitor currently in phase I clinical trials (NCT03600883).


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirimidinonas/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Ensaios Clínicos como Assunto , Cães , Descoberta de Drogas , Humanos , Isomerismo , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Piperazinas/química , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacocinética , Ratos , Relação Estrutura-Atividade
6.
J Med Chem ; 61(18): 8186-8201, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30148953

RESUMO

Transient-receptor-potential melastatin 8 (TRPM8), the predominant mammalian cold-temperature thermosensor, is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system, including nerve circuitry implicated in migraine pathogenesis: the trigeminal and pterygopalatine ganglia. Genomewide association studies have identified an association between TRPM8 and reduced risk of migraine. This disclosure focuses on medicinal-chemistry efforts to improve the druglike properties of initial leads, particularly removal of CYP3A4-induction liability and improvement of pharmacokinetic properties. A novel series of biarylmethanamide TRPM8 antagonists was developed, and a subset of leads were evaluated in preclinical toxicology studies to identify a clinical candidate with an acceptable preclinical safety profile leading to clinical candidate AMG 333, a potent and highly selective antagonist of TRPM8 that was evaluated in human clinical trials.


Assuntos
Anticonvulsivantes/farmacologia , Descoberta de Drogas , Transtornos de Enxaqueca/prevenção & controle , Niacina/química , Convulsões/tratamento farmacológico , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Anticonvulsivantes/química , Agonistas dos Canais de Cálcio/toxicidade , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Pirimidinonas/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
7.
Bioorg Med Chem Lett ; 28(6): 1111-1115, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29426770

RESUMO

The diastereoselective synthesis and structure activity relationship (SAR) of a series of fused cyclopropyl-3-amino-2,4-oxazine (2-oxa-4-azabicyclo[4.1.0]hept-3-en-3-amine)-containing BACE inhibitors is described. Through these efforts compound 2 was identified as a potent (cell IC50 = 15 nM) BACE inhibitor with acceptable ADME properties. When tested in vivo, compound 2 demonstrated a significant reduction of brain and cerebral spinal fluid (CSF) Aß40 levels (46% and 66%, respectively) in a rat pharmacodynamic study and thus represents a suitable starting point for the further development of in vivo efficacious compounds for the treatment of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Compostos Aza/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Inibidores Enzimáticos/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Compostos Aza/síntese química , Compostos Aza/química , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade
8.
Front Pharmacol ; 8: 838, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209212

RESUMO

The iron exporter ferroportin and its ligand, the hormone hepcidin, control fluxes of stored and recycled iron for use in a variety of essential biochemical processes. Inflammatory disorders and malignancies are often associated with high hepcidin levels, leading to ferroportin down-regulation, iron sequestration in tissue macrophages and subsequent anemia. The objective of this research was to develop reagents to characterize the expression of ferroportin, the interaction between ferroportin and hepcidin, as well as to identify novel ferroportin antagonists capable of maintaining iron export in the presence of hepcidin. Development of investigative tools that enabled cell-based screening assays is described in detail, including specific and sensitive monoclonal antibodies that detect endogenously-expressed human and mouse ferroportin and fluorescently-labeled chemically-synthesized human hepcidin. Large and small molecule antagonists inhibiting hepcidin-mediated ferroportin internalization were identified, and unique insights into the requirements for interaction between these two key iron homeostasis molecules are provided.

9.
ACS Med Chem Lett ; 7(7): 719-23, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27437084

RESUMO

We report the discovery of PDE10A PET tracer AMG 580 developed to support proof of concept studies with PDE10A inhibitors in the clinic. To find a tracer with higher binding potential (BPND) in NHP than our previously reported tracer 1, we implemented a surface plasmon resonance assay to measure the binding off-rate to identify candidates with slower washout rate in vivo. Five candidates (2-6) from two structurally distinct scaffolds were identified that possessed both the in vitro characteristics that would favor central penetration and the structural features necessary for PET isotope radiolabeling. Two cinnolines (2, 3) and one keto-benzimidazole (5) exhibited PDE10A target specificity and brain uptake comparable to or better than 1 in the in vivo LC-MS/MS kinetics distribution study in SD rats. In NHP PET imaging study, [(18)F]-5 produced a significantly improved BPND of 3.1 and was nominated as PDE10A PET tracer clinical candidate for further studies.

10.
Bioorg Med Chem Lett ; 25(19): 4158-63, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26299349

RESUMO

The observation that cholinergic deafferentation of circuits projecting from forebrain basal nuclei to frontal and hippocampal circuits occurs in Alzheimer's disease has led to drug-targeting of muscarinic M1 receptors to alleviate cognitive symptoms. The high homology within the acetylcholine binding domain of this family however has made receptor-selective ligand development challenging. This work presents the synthesis scheme, pharmacokinetic and structure-activity-relationship study findings for M1-selective ligand, LY593093. Pharmacologically the compound acts as an orthosteric ligand. The homology modeling work presented however will illustrate that compound binding spans from the acetylcholine pocket to the extracellular loops of the receptor, a common allosteric vestibule for the muscarinic protein family. Altogether LY593093 represents a growing class of multi-topic ligands which interact with the receptors in both the ortho- and allosteric binding sites, but which exert their activation mechanism as an orthosteric ligand.


Assuntos
Amidas/química , Amidas/farmacologia , Desenho de Fármacos , Receptor Muscarínico M1/agonistas , Amidas/síntese química , Animais , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
11.
Nucl Med Biol ; 42(8): 654-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25935386

RESUMO

INTRODUCTION: Phosphodiesterase 10A (PDE10A) is an intracellular enzyme responsible for the breakdown of cyclic nucleotides which are important second messengers for neurotransmission. Inhibition of PDE10A has been identified as a potential target for treatment of various neuropsychiatric disorders. To assist drug development, we have identified a selective PDE10A positron emission tomography (PET) tracer, AMG 580. We describe here the radiosynthesis of [(18)F]AMG 580 and in vitro and in vivo characterization results. METHODS: The potency and selectivity were determined by in vitro assay using [(3)H]AMG 580 and baboon brain tissues. [(18)F]AMG 580 was prepared by a 1-step [(18)F]fluorination procedure. Dynamic brain PET scans were performed in non-human primates. Regions-of-interest were defined on individuals' MRIs and transferred to the co-registered PET images. Data were analyzed using two tissue compartment analysis (2TC), Logan graphical (Logan) analysis with metabolite-corrected input function and the simplified reference tissue model (SRTM) method. A PDE10A inhibitor and unlabeled AMG 580 were used to demonstrate the PDE10A specificity. KD was estimated by Scatchard analysis of high and low affinity PET scans. RESULTS: AMG 580 has an in vitro KD of 71.9 pM. Autoradiography showed specific uptake in striatum. Mean activity of 121 ± 18 MBq was used in PET studies. In Rhesus, the baseline BPND for putamen and caudate was 3.38 and 2.34, respectively, via 2TC, and 3.16, 2.34 via Logan, and 2.92, and 2.01 via SRTM. A dose dependent decrease of BPND was observed by the pre-treatment with a PDE10A inhibitor. In baboons, 0.24 mg/kg dose of AMG 580 resulted in about 70% decrease of BPND. The in vivo KD of [(18)F]AMG 580 was estimated to be around 0.44 nM in baboons. CONCLUSION: [(18)F]AMG 580 is a selective and potent PDE10A PET tracer with excellent specific striatal binding in non-human primates. It warrants further evaluation in humans.


Assuntos
Aminopiridinas/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor/farmacocinética , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacocinética , Aminopiridinas/síntese química , Animais , Autorradiografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Marcação por Isótopo , Cinética , Macaca mulatta , Masculino , Taxa de Depuração Metabólica , Papio , Radioquímica , Compostos Radiofarmacêuticos/síntese química , Distribuição Tecidual
12.
ACS Med Chem Lett ; 6(1): 68-72, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25589933

RESUMO

The kinase/endonuclease inositol requiring enzyme 1 (IRE1α), one of the sensors of unfolded protein accumulation in the endoplasmic reticulum that triggers the unfolded protein response (UPR), has been investigated as an anticancer target. We identified potent allosteric inhibitors of IRE1α endonuclease activity that bound to the kinase site on the enzyme. Structure-activity relationship (SAR) studies led to 16 and 18, which were selective in kinase screens and were potent against recombinant IRE1α endonuclease as well as cellular IRE1α. The first X-ray crystal structure of a kinase inhibitor (16) bound to hIRE1α was obtained. Screening of native tumor cell lines (>300) against selective IRE1α inhibitors failed to demonstrate any effect on cellular viability. These results suggest that IRE1α activity is not essential for viability in most tumor cell lines, in vitro, and that interfering with the survival functions of the UPR may not be an effective strategy to block tumorigenesis.

13.
J Pharmacol Exp Ther ; 352(2): 327-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25502803

RESUMO

Phosphodiesterase 10A (PDE10A) inhibitors have therapeutic potential for the treatment of psychiatric and neurologic disorders, such as schizophrenia and Huntington's disease. One of the key requirements for successful central nervous system drug development is to demonstrate target coverage of therapeutic candidates in brain for lead optimization in the drug discovery phase and for assisting dose selection in clinical development. Therefore, we identified AMG 580 [1-(4-(3-(4-(1H-benzo[d]imidazole-2-carbonyl)phenoxy)pyrazin-2-yl)piperidin-1-yl)-2-fluoropropan-1-one], a novel, selective small-molecule antagonist with subnanomolar affinity for rat, primate, and human PDE10A. We showed that AMG 580 is suitable as a tracer for lead optimization to determine target coverage by novel PDE10A inhibitors using triple-stage quadrupole liquid chromatography-tandem mass spectrometry technology. [(3)H]AMG 580 bound with high affinity in a specific and saturable manner to both striatal homogenates and brain slices from rats, baboons, and human in vitro. Moreover, [(18)F]AMG 580 demonstrated prominent uptake by positron emission tomography in rats, suggesting that radiolabeled AMG 580 may be suitable for further development as a noninvasive radiotracer for target coverage measurements in clinical studies. These results indicate that AMG 580 is a potential imaging biomarker for mapping PDE10A distribution and ensuring target coverage by therapeutic PDE10A inhibitors in clinical studies.


Assuntos
Benzimidazóis/farmacologia , Encéfalo/enzimologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Pirazinas/farmacologia , Animais , Benzimidazóis/farmacocinética , Encéfalo/diagnóstico por imagem , Cromatografia Líquida , Feminino , Radioisótopos de Flúor , Humanos , Masculino , Espectrometria de Massas , Estrutura Molecular , Papio , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacocinética , Ligação Proteica , Pirazinas/farmacocinética , Ensaio Radioligante , Ratos Sprague-Dawley , Especificidade da Espécie , Estereoisomerismo , Ressonância de Plasmônio de Superfície , Distribuição Tecidual
14.
Bioorg Med Chem ; 22(23): 6570-6585, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25456383

RESUMO

We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.


Assuntos
Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Quinolinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Quinolinas/síntese química , Quinolinas/química , Solubilidade , Relação Estrutura-Atividade
15.
J Med Chem ; 57(15): 6632-41, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25062128

RESUMO

We report the identification of a PDE10A clinical candidate by optimizing potency and in vivo efficacy of promising keto-benzimidazole leads 1 and 2. Significant increase in biochemical potency was observed when the saturated rings on morpholine 1 and N-acetyl piperazine 2 were changed by a single atom to tetrahydropyran 3 and N-acetyl piperidine 5. A second single atom modification from pyrazines 3 and 5 to pyridines 4 and 6 improved the inhibitory activity of 4 but not 6. In the in vivo LC-MS/MS target occupancy (TO) study at 10 mg/kg, 3, 5, and 6 achieved 86-91% occupancy of PDE10A in the brain. Furthermore, both CNS TO and efficacy in PCP-LMA behavioral model were observed in a dose dependent manner. With superior in vivo TO, in vivo efficacy and in vivo PK profiles in multiple preclinical species, compound 5 (AMG 579) was advanced as our PDE10A clinical candidate.


Assuntos
Antipsicóticos/química , Benzimidazóis/química , Inibidores de Fosfodiesterase/química , Diester Fosfórico Hidrolases/metabolismo , Pirazinas/química , Administração Oral , Animais , Antipsicóticos/síntese química , Antipsicóticos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Disponibilidade Biológica , Encéfalo/metabolismo , Cães , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/química , Primatas , Conformação Proteica , Pirazinas/síntese química , Pirazinas/farmacologia , Ratos Sprague-Dawley , Relação Estrutura-Atividade
16.
ACS Med Chem Lett ; 5(6): 700-5, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24944747

RESUMO

We report the discovery of novel imidazo[4,5-b]pyridines as potent and selective inhibitors of PDE10A. The investigation began with our recently disclosed ketobenzimidazole 1, which exhibited single digit nanomolar PDE10A activity but poor oral bioavailability. To improve oral bioavailability, we turned to novel scaffold imidazo[4,5-b]pyridine 2, which not only retained nanomolar PDE10A activity but was also devoid of the morpholine metabolic liability. Structure-activity relationship studies were conducted systematically to examine how various regions of the molecule impacted potency. X-ray cocrystal structures of compounds 7 and 24 in human PDE10A helped to elucidate the key bonding interactions. Five of the most potent and structurally diverse imidazo[4,5-b]pyridines (4, 7, 12b, 24a, and 24b) with PDE10A IC50 values ranging from 0.8 to 6.7 nM were advanced into receptor occupancy studies. Four of them (4, 12b, 24a, and 24b) achieved 55-74% RO at 10 mg/kg po.

17.
Nucl Med Biol ; 41(4): 343-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24607437

RESUMO

INTRODUCTION: Phosphodiesterase 10A (PDE10A) is an intracellular enzyme responsible for the breakdown of cyclic nucleotides which are important secondary messengers in the central nervous system. Inhibition of PDE10A has been identified as a potential therapeutic target for treatment of various neuropsychiatric disorders. To assist the drug development program, we have identified a selective PDE10A PET tracer, [(11)C]AMG 7980, for imaging PDE10A distribution using positron emission tomography. METHODS: [(11)C]AMG 7980 was prepared in a one-pot, two-step reaction. Dynamic PET scans were performed in non-human primates following a bolus or bolus plus constant infusion tracer injection paradigm. Regions-of-interest were defined on individuals' MRIs and transferred to the co-registered PET images. Data were analyzed using Logan graphical analysis with metabolite-corrected input function, the simplified reference tissue model (SRTM) method and occupancy plots. A benchmark PDE10A inhibitor was used to demonstrate PDE10A-specific binding. RESULTS: [(11)C]AMG 7980 was prepared with a mean specific activity of 99 ± 74 GBq/µmol (n=10) and a synthesis time of 45 min. Specific binding of the tracer was localized to the striatum and globus pallidus (GP) and low in other brain regions. Thalamus was used as the reference tissue to derive binding potentials (BPND). The BPND for caudate, putamen, and GP were 0.23, 0.65, 0.51, respectively by the graphical method, and 0.42, 0.76, and 0.75 from the SRTM method. A dose dependent decrease of BPND was observed with the pre-treatment of a PDE10A inhibitor. A bolus plus infusion injection paradigm yielded similar results. CONCLUSION: [(11)C]AMG 7980 has been successfully used for imaging PDE10A in non-human primate brain. Despite the fast brain kinetics it can be used to measure target occupancy of PDE10A inhibitors in non-human primates and potentially applicable to humans.


Assuntos
Aminopiridinas , Diester Fosfórico Hidrolases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Piridazinas , Aminopiridinas/síntese química , Aminopiridinas/química , Aminopiridinas/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Estudos de Viabilidade , Cinética , Masculino , Papio , Piridazinas/síntese química , Piridazinas/química , Piridazinas/metabolismo , Radioquímica
18.
J Med Chem ; 56(21): 8781-92, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24102193

RESUMO

Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.


Assuntos
Benzimidazóis/farmacologia , Desenho de Fármacos , Cetonas/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Animais , Benzimidazóis/administração & dosagem , Benzimidazóis/síntese química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Cetonas/administração & dosagem , Cetonas/síntese química , Masculino , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/síntese química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Suínos
19.
Bioorg Med Chem Lett ; 23(23): 6447-54, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24139583

RESUMO

γ-Secretase modulators (GSMs) are potentially disease-modifying treatments for Alzheimer's disease. They selectively lower pathogenic Aß42 levels by shifting the enzyme cleavage sites without inhibiting γ-secretase activity, possibly avoiding known adverse effects observed with complete inhibition of the enzyme complex. A cell-based HTS effort identified the sulfonamide 1 as a GSM lead. Lead optimization studies identified compound 25 with improved cell potency, PKDM properties, and it lowered Aß42 levels in the cerebrospinal fluid (CSF) of Sprague-Dawley rats following oral administration. Further optimization of 25 to improve cellular potency is described.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amidas/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Picolinas/farmacologia , Doença de Alzheimer/enzimologia , Amidas/química , Animais , Células HEK293 , Humanos , Picolinas/química , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA