Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 964, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240390

RESUMO

The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Sistema Imunitário , Neoplasias , RNA Longo não Codificante , Humanos , Neoplasias/genética , Neoplasias/imunologia , RNA Longo não Codificante/genética , Genes Homeobox/genética , Sistema Imunitário/metabolismo , Animais
2.
Exp Cell Res ; 442(2): 114236, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245198

RESUMO

Widespread changes in the expression of microRNAs in cancer result in abnormal gene expression for the miRNAs that control those genes, which in turn causes changes to entire molecular networks and pathways. The frequently altered miR-31, which is found in a wide range of cancers, is one cancer-related miRNA that is particularly intriguing. MiR-31 has a very complicated set of biological functions, and depending on the type of tumor, it may act both as a tumor suppressor and an oncogene. The endogenous expression levels of miR-31 appear to be a key determinant of the phenotype brought on by aberrant expression. Varied expression levels of miR-31 could affect cell growth, metastasis, drug resistance, and other process by several mechanisms like targeting BRCA1-associated protein-1 (BAP1), large tumor suppressor kinase 1 (LATS1) and protein phosphatase 2 (PP2A). This review highlights the current understanding of the genes that miR-31 targets while summarizing the complex expression patterns of miR-31 in human cancers and the diverse phenotypes brought on by altered miR-31 expression.

3.
Int J Biol Macromol ; : 136058, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39341308

RESUMO

The review examined the potential of starch-based drug delivery systems for managing breast cancer efficiently. It covered the background of breast cancer and the significance of drug delivery systems in treatment enhancement. Starch, known for its versatile physicochemical properties, was explored as a promising biopolymer for drug delivery. The review detailed the properties of starch relevant to drug delivery, synthesis methods, and characterization approaches. It discussed the application of starch-based systems in breast cancer treatment, focusing on their role in improving chemotherapy delivery. The advantages and limitations of these systems, such as biocompatibility and drug loading capacity, were evaluated, along with future research directions in starch modification and emerging technologies. The review concluded by emphasizing the potential of starch-based drug delivery systems in improving breast cancer treatment outcomes.

4.
RSC Adv ; 14(34): 24473-24482, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39108958

RESUMO

Currently, nanocomposites are synthesized and used in various fields. One of the applications of these nanostructures is in the medical field. Therefore, the synthesis of new composites with biological properties is important. In this study, under microwave conditions, a new nanocomposite containing molybdenum and [2,2'-bipyridine]-4,4'-dicarboxylic acid (Mo/BPDA) was synthesized. The synthesized Mo/BPDA composite was subjected to biological evaluations such as antibacterial and antifungal properties by clinical and laboratory standards institute guidelines, and anticancer properties by MTT method. Characterization and structure characteristics of the Mo/BPDA nanocomposite were evaluated using XRD (X-ray diffraction pattern), FT-IR (Fourier-transform infrared), EDAX (energy-dispersive X-ray), EA (elemental analysis), TGA/DTG (thermogravimetric analysis/differential thermogravimetry), SEM (scanning electron microscopy) and BET (Brunauer-Emmett-Teller) analysis. The results indicated relatively high thermal stability (300 °C), high specific surface area (35 cm3 g-1) and uniform morphology of the synthesized Mo/BPDA nanocomposite. In antibacterial and antifungal activity, minimum inhibitory concentration (between 2 and 256 µg mL-1), minimum bactericidal concentration (between 4 and 128 µg mL-1), and minimum fungicidal concentration (between 64 and 256 µg mL-1) were tested and reported. The results showed that the antibacterial and antifungal activity of Mo/BPDA nanocomposite is higher than that of antibiotic drugs such as ampicillin, cefazolin, ketoconazole, and nystatin. In the investigation of the anticancer activity that was tested against bone cancer cells and breast cancer cells for 24 and 48 hours, cell proliferation and viability (37.3648-82.0674 tan control) and IC50 (33-43 µg mL-1) were observed. As a final result, it can be stated that the synthesized Mo/BPDA nanocomposite after the additional biological evaluations, such as in vivo study, can be used as an efficient option in treating bone cancer cells and breast cancer cells and a strong antibiotic on a wide range of infectious diseases.

5.
Cell Biol Int ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164963

RESUMO

This study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects. These inhibitors can stop cell growth, proliferation, and survival in breast cancer cells by blocking critical signaling pathways within the mTOR pathway. Furthermore, the essay discusses the implications of using mTOR inhibitors as a comprehensive therapeutic strategy. It emphasizes the potential benefits of combining mTOR inhibitors with other treatment approaches to enhance the effectiveness of breast cancer treatment. The evolving landscape of breast cancer research underscores the significance of mTOR as a therapeutic target and highlights ongoing efforts to improve and optimize mTOR inhibitors for clinical use. In conclusion, the essay asserts that inhibitors of the mTOR signaling pathway offer a promising approach in the fight against breast cancer. These inhibitors provide a focused and effective intervention targeting specific dysregulations within the mTOR pathway. As research advances, the integration of mTOR inhibitors into customized combination therapies holds excellent potential for shaping a more effective and personalized approach to breast cancer treatment, ultimately leading to improved outcomes for individuals affected by this complex and diverse disease.

6.
Cell Biochem Biophys ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907940

RESUMO

Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.

7.
Med Oncol ; 41(7): 171, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849654

RESUMO

Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Humanos , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
8.
Cell Biochem Funct ; 42(4): e4029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773914

RESUMO

Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Receptores de Reconhecimento de Padrão , Humanos , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/citologia , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Imunomodulação
9.
Cell Biochem Biophys ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806965

RESUMO

The advancement of novel technologies, coupled with bioinformatics, has led to the discovery of additional genes, such as long noncoding RNAs (lncRNAs), that are associated with drug resistance. LncRNAs are composed of over 200 nucleotides and do not possess any protein coding function. These lncRNAs exhibit lower conservation across species, are typically expressed at low levels, and often display high specificity towards specific tissues and developmental stages. The LncRNA MALAT1 plays crucial regulatory roles in various aspects of genome function, encompassing gene transcription, splicing, and epigenetics. Additionally, it is involved in biological processes related to the cell cycle, cell differentiation, development, and pluripotency. Recently, MALAT1 has emerged as a novel mechanism contributing to drug resistance or sensitivity, attracting significant attention in the field of cancer research. This review aims to explore the mechanisms through which MALAT1 confers resistance to chemotherapy and radiotherapy in cancer cells.

10.
Cell Biochem Biophys ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805114

RESUMO

While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.

11.
J Biochem Mol Toxicol ; 38(6): e23719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764138

RESUMO

Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.


Assuntos
Células Dendríticas , Exossomos , Inibidores de Checkpoint Imunológico , Imunoterapia , Células-Tronco Neoplásicas , Microambiente Tumoral , Humanos , Exossomos/imunologia , Exossomos/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Vacinas Anticâncer/imunologia , Animais
12.
Cell Biochem Biophys ; 82(2): 593-607, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750383

RESUMO

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Interferente Pequeno/metabolismo , Carcinogênese/genética
13.
Crit Rev Anal Chem ; : 1-14, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165810

RESUMO

The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.

14.
Cancer Metastasis Rev ; 43(1): 5-27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37552389

RESUMO

The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α transcriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehensively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.


Assuntos
MicroRNAs , Neoplasias , Humanos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA não Traduzido/genética
15.
Pestic Biochem Physiol ; 197: 105701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072556

RESUMO

BACKGROUND: Aluminum phosphide (AlP) is a well-known toxic compound used as an agricultural pesticide to prevent insect damage to stored crops. However, even if just a small amount was consumed, it caused lasting harm to the human body and, in acute concentrations, death. The current study employed cerium oxide nanoparticles (CeO2 NPs) to reduce oxidative stress and various harmful outcomes of AlP poisoning. METHODS: Following finding effective concentrations of CeO2 NPs via MTT assay, Human Cardiac Myocyte (HCM) cells were pre-treated with CeO2 NPs for 24 h. After that, they were exposed to 2.36 µM AlP. The activity of oxidative stress and mitochondrial biomarkers, including mitochondrial swelling, mitochondrial membrane potential, and cytochrome c release, were evaluated in HCM cells. Finally, the population of apoptotic and necrotic cells was assessed via flow cytometry. RESULTS: After 24 h, data revealed that all tested concentrations of CeO2 NPs were safe, and 25 and 50 µM of that were selected as effective concentrations. Oxidative stress markers (malondialdehyde, protein carbonyl, superoxide dismutase, and catalase) showed that CeO2 NPs could successfully decrease AlP poisoning due to their antioxidant characteristics. Mitochondrial markers were also recovered by pre-treatment of HCM cells with CeO2 NPs. Furthermore, pre-treating with CeO2 NPs could compensate for the reduction of live cells with AlP and cause a diminishing in the population of early and late apoptotic cells. CONCLUSION: As a result, it is evident that CeO2 NPs, through the recovery of oxidative stress and mitochondrial damages caused by AlP, reduce apoptosis and have therapeutic potentials on HCM cells.


Assuntos
Nanopartículas , Praguicidas , Humanos , Praguicidas/toxicidade , Estresse Oxidativo
16.
Anal Methods ; 15(39): 5146-5156, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37753580

RESUMO

The present study developed a DNA biosensor to determine pemigatinib for the first time. Three-dimensional carnation flower-like Eu3+:ß-MnO2 nanostructures (3D CF-L Eu3+:ß-MnO2 NSs) and a screen-printed electrode (SPE) modified with polyaniline (PA) were employed. The double-stranded DNA was also immobilized completely on the PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE. Then, electrochemical techniques were used for characterizing the modified electrode. After that, the interaction between pemigatinib and DNA was shown by a reduction in the oxidation current of guanine using differential pulse voltammetry (DPV). According to the analysis, the dynamic range of pemigatinib was between 0.001 and 180.0 µM, indicating the new electrode has a low limit of detection (LOD = 0.23 nM) for pemigatinib. Afterwards, pemigatinib in real samples was measured using the PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE loaded with ds-DNA. The proposed DNA biosensor showed good selectivity toward pemigatinib in the presence of other interference analytes, such as other ions, structurally related pharmaceuticals, and plasma proteins. In addition, the interaction site of pemigatinib with DNA was predicted by molecular docking, which showed the interaction of pemigatinib with the guanine bases of DNA through a groove binding mode. Finally, we employed the t-test to verify the capability of the ds-DNA/PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE for analyzing pemigatinib in real samples.

17.
Int Immunopharmacol ; 123: 110713, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523968

RESUMO

microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/metabolismo , Genes Supressores de Tumor , Oncogenes , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética
18.
Ecotoxicol Environ Saf ; 260: 115066, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37262969

RESUMO

Membrane-based separation processes has been recently of significant global interest compared to other conventional separation approaches due to possessing undeniable advantages like superior performance, environmentally-benign nature and simplicity of application. Computational simulation of fluids has shown its undeniable role in modeling and simulation of numerous physical/chemical phenomena including chemical engineering, chemical reaction, aerodynamics, drug delivery and plasma physics. Definition of fluids can be occurred using the Navier-Stokes equations, but solving the equations remains an important challenge. In membrane-based separation processes, true perception of fluid's manner through disparate membrane modules is an important concern, which has been significantly limited applying numerical/computational procedures such s computational fluid dynamics (CFD). Despite this noteworthy advantage, the optimization of membrane processes using CFD is time-consuming and expensive. Therefore, combination of artificial intelligence (AI) and CFD can result in the creation of a promising hybrid model to accurately predict the model results and appropriately optimize membrane processes and phase separation. This paper aims to provide a comprehensive overview about the advantages of commonly-employed ML-based techniques in combination with the CFD to intelligently increase the optimization accuracy and predict mass transfer and the unfavorable events (i.e., fouling) in various membrane processes. To reach this objective, four principal strategies of AI including SL, USL, SSL and ANN were explained and their advantages/disadvantages were discussed. Then after, prevalent ML-based algorithm for membrane-based separation processes. Finally, the application potential of AI techniques in different membrane processes (i.e., fouling control, desalination and wastewater treatment) were presented.


Assuntos
Inteligência Artificial , Purificação da Água , Simulação por Computador , Algoritmos , Purificação da Água/métodos , Hidrodinâmica
19.
J Food Prot ; 86(7): 100102, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172905

RESUMO

In this study, an eco-friendly procedure was established by vortex-assisted liquid-phase microextraction based on deep eutectic solvent (VA-LPME-DES) combined with graphite furnace atomic absorption spectroscopy (GFAAS). The performance of this method was demonstrated by the extraction and analysis of lead (Pb), cadmium (Cd), and mercury (Hg) in fish samples. The hydrophobic DES is considered as a green extractant (environmentally friendly and less toxic than common organic solvents) and is a suitable alternative to common toxic organic solvents and is made of l-menthol and ethylene glycol (EG) with a molar ratio of 1:1. Under optimized conditions, the method linearity was in the ranges of 0.15-150 µg kg-1 with the coefficient of determinations (r2) higher than 0.996. Accordingly, the detection limits for Pb, Cd, and Hg were 0.05, 0.05, and 0.10 µg kg-1, respectively. The analysis of fish samples showed that the concentration of toxic elements in fish caught from the Tigris and Euphrates Rivers is much higher than the concentration of these elements in locally farmed trout fish. Also, the analysis of fish-certified reference materials with presented procedure produced results that were in good agreement with the certified values. The results showed that VA-LPME-DES is a very cheap, fast, and environmental-friendly procedure for the analysis of toxic elements in different types of fish species.


Assuntos
Microextração em Fase Líquida , Mercúrio , Animais , Solventes/análise , Solventes Eutéticos Profundos , Cádmio/análise , Iraque , Chumbo/análise , Mercúrio/análise , Microextração em Fase Líquida/métodos , Peixes , Limite de Detecção
20.
Microb Pathog ; 176: 106020, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746316

RESUMO

Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.


Assuntos
MicroRNAs , Viroses , Animais , Cavalos , Humanos , MicroRNAs/genética , Regulação para Baixo , Genitália , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA