Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 132(5): 232-246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494530

RESUMO

Indoor insecticide applications are the primary tool for reducing malaria transmission in the Solomon Archipelago, a region where Anopheles farauti is the only common malaria vector. Due to the evolution of behavioural resistance in some An. farauti populations, these applications have become less effective. New malaria control interventions are therefore needed in this region, and gene-drives provide a promising new technology. In considering developing a population-specific (local) gene-drive in An. farauti, we detail the species' population genetic structure using microsatellites and whole mitogenomes, finding many spatially confined populations both within and between landmasses. This strong population structure suggests that An. farauti would be a useful system for developing a population-specific, confinable gene-drive for field release, where private alleles can be used as Cas9 targets. Previous work on Anopheles gambiae has used the Cardinal gene for the development of a global population replacement gene-drive. We therefore also analyse the Cardinal gene to assess whether it may be a suitable target to engineer a gene-drive for the modification of local An. farauti populations. Despite the extensive population structure observed in An. farauti for microsatellites, only one remote island population from Vanuatu contained fixed and private alleles at the Cardinal locus. Nonetheless, this study provides an initial framework for further population genomic investigations to discover high-frequency private allele targets in localized An. farauti populations. This would enable the development of gene-drive strains for modifying localised populations with minimal chance of escape and may provide a low-risk route to field trial evaluations.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Genética Populacional , Malária , Repetições de Microssatélites , Mosquitos Vetores , Anopheles/genética , Animais , Mosquitos Vetores/genética , Malária/transmissão , Tecnologia de Impulso Genético/métodos , Melanesia , Alelos
2.
J Med Entomol ; 61(2): 491-497, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38236068

RESUMO

During preliminary mosquito surveys at Cowley Beach Training Area in north Queensland, Australia, it was found that the utility of the standard encephalitis virus surveillance (EVS) trap for collecting the malaria vector Anopheles farauti (Laveran) adults was compromised by the harsh tropical conditions. With the aim of increasing the survival rate of mosquitoes, we designed a downdraft fan box trap (FBT) that incorporated a screened fan at the bottom of the trap, so mosquitoes did not have to pass through a fan. The FBT was tested against the EVS and Centers for Disease Control (CDC) light traps, where mosquitoes do pass through a fan, and a nonpowered passive box trap (PBT). We conducted 4 trials to compare the quantity and survival of An. farauti and culicine mosquitoes were collected in these traps. Although not significant, the FBT collected more An. farauti than the EVS trap and PBT and significantly less An. farauti than the CDC light trap. However, the FBT improved on the CDC light trap in terms of the survival of An. farauti adults collected, with a significantly higher percentage alive in the FBT (74.6%) than in the CDC light trap (27.5%). Thus, although the FBT did not collect as many anophelines as the CDC, it proved to be superior to current trap systems for collecting large numbers of live and relatively undamaged mosquitoes. Therefore, it is recommended that FBTs be used for collecting An. farauti adults in northern Australia, especially when high survival and sample quality are important.


Assuntos
Anopheles , Malária , Animais , Queensland , Mosquitos Vetores , Controle de Mosquitos , Austrália
3.
Evol Appl ; 16(4): 849-862, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124090

RESUMO

The dengue mosquito, Aedes aegypti (Linnaeus, 1762), is a highly invasive and medically significant vector of dengue, yellow fever, chikungunya and Zika viruses, whose global spread can be attributed to increased globalization in the 15th through 20th century. Records of the invasion history of Ae. aegypti across Southeast Asia are sparse and there is little knowledge regarding the invasion routes that the species exploited to gain a foothold in the Indo-Pacific. Likewise, a broad and geographically thorough investigation of Ae. aegypti population genetics in the Indo-Pacific is lacking, despite this region being highly impacted by diseases transmitted by this species. We assess 11 nuclear microsatellites and mitochondrial COI sequences, coupled with widespread sampling through the Indo-Pacific region to characterise population structure at a broad geographic scale. We also perform a comprehensive literature search to collate documentation of the first known records of Ae. aegypti at various locations in the Indo-Pacific. We revealed additional spatial population genetic structure of Ae. aegypti in Southeast Asia, the Indo-Pacific and Australasia compared with previous studies and find differentiation between multiple Queensland and Torres Strait Islands populations. We also detected additional genetic breaks within Australia, Indonesia and Malaysia. Characterising the structure of previously unexplored populations through this region enhances the understanding of the population structure of Ae. aegypti in Australasia and Southeast Asia and may assist predictions of future mosquito movement, informing control strategies as well as assessing the risk of new invasion pathways.

4.
Malar J ; 22(1): 85, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890552

RESUMO

BACKGROUND: Anopheles farauti is one of the major vectors of malaria in the Southwest Pacific region and is responsible for past outbreaks in Australia. With an adaptable biting profile conducive to behavioural resistance to indoor residual spraying (IRS) and insecticide-treated nets (ITNs), its all-night biting behaviour can switch to biting mostly in the early evening. With limited insight into the biting profile of An. farauti populations in areas that have not encountered IRS or ITNs, the aim of this study was to develop insights on the biting behaviour of a malaria control naive population of An. farauti. METHODS: Biting profiles of An. farauti were conducted at Cowley Beach Training Area, in north Queensland, Australia. Initially, encephalitis virus surveillance (EVS) traps were used to document the 24-h biting profile of An. farauti and then human landing collections (HLC) were used to follow the 18.00-06.00 h biting profile. The human landing catches (HLC) were performed at both the end of the wet (April) and dry (October) seasons. RESULTS: Data exploration using a Random Forest Model shows that time of night is the most important variable for predicting An. farauti biting activity. Temperature was found to be the next important predictor, followed by humidity, trip, collector, and season. The significant effect of time of night and peak in time of night biting, between 19.00 and 20.00 h was also observed in a generalized linear model. The main effect of temperature was significant and non-linear and appears to have a positive effect on biting activity. The effect of humidity is also significant but its relationship with biting activity is more complex. This population's biting profile is similar to populations found in other parts of its range prior to insecticide intervention. A tight timing for the onset of biting was identified with more variation with the end of biting, which is likely underpinned by an endogenous circadian clock rather than any light intensity. CONCLUSION: This study sees the first record of a relationship between biting activity and the decreasing temperature during the night for the malaria vector, Anopheles farauti.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Humanos , Queensland/epidemiologia , Estações do Ano , Mosquitos Vetores , Umidade , Temperatura , Malária/epidemiologia , Malária/prevenção & controle , Austrália , Controle de Mosquitos
5.
PLoS Negl Trop Dis ; 16(10): e0010786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36227923

RESUMO

Biological control of mosquito vectors using the endosymbiotic bacteria Wolbachia is an emerging strategy for the management of human arboviral diseases. We recently described the development of a strain of Aedes aegypti infected with the Wolbachia strain wAlbB (referred to as the wAlbB2-F4 strain) through simple backcrossing of wild type Australian mosquitoes with a wAlbB infected Ae. aegypti strain from the USA. Field releases of male wAlbB2-F4 mosquitoes resulted in the successful suppression of wild populations of mosquitoes in the trial sites by exploiting the strain's Wolbachia-induced cytoplasmic incompatibility. We now demonstrate that the strain is resistant to infection by dengue and Zika viruses and is genetically similar to endemic Queensland populations. There was a fourfold reduction in the proportion of wAlbB2-F4 mosquitoes that became infected following a blood meal containing dengue 2 virus (16.7%) compared to wild type mosquitoes (69.2%) and a 6-7 fold reduction in the proportion of wAlbB2-F4 mosquitoes producing virus in saliva following a blood meal containing an epidemic strain of Zika virus (8.7% in comparison to 58.3% in wild type mosquitoes). Restriction-site Associated DNA (RAD) sequencing revealed that wAlbB2-F4 mosquitoes have > 98% Australian ancestry, confirming the successful introduction of the wAlbB2 infection into the Australian genomic background through backcrossing. Genotypic and phenotypic analyses showed the wAlbB2-F4 strain retains the insecticide susceptible phenotype and genotype of native Australian mosquitoes. We demonstrate that the Wolbachia wAlbB2-F4, in addition to being suitable for population suppression programs, can also be effective in population replacement programs given its inhibition of virus infection in mosquitoes. The ease at which a target mosquito population can be transfected with wAlbB2, while retaining the genotypes and phenotypes of the target population, shows the utility of this strain for controlling the Ae. aegypti mosquitoes and the pathogens they transmit.


Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Austrália , DNA , Dengue/prevenção & controle , Vírus da Dengue/fisiologia , Humanos , Masculino , Mosquitos Vetores , Wolbachia/fisiologia , Zika virus/genética , Infecção por Zika virus/prevenção & controle
6.
iScience ; 25(7): 104521, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35754720

RESUMO

We investigate the genetic basis of anthropophily (human host use) in a non-model mosquito species group, the Anopheles farauti complex from the southwest Pacific. This complex has experienced multiple transitions from anthropophily to zoophily, contrasting with well-studied systems (the global species Aedes aegypti and the African Anopheles gambiae complex) that have evolved to be specialist anthropophiles. By performing tests of selection and assessing evolutionary patterns for >200 olfactory genes from nine genomes, we identify several candidate genes associated with differences in anthropophily in this complex. Based on evolutionary patterns (phylogenetic relationships, fixed amino acid differences, and structural differences) as well as results from selection analyses, we identify numerous genes that are likely to play an important role in mosquitoes' ability to detect humans as hosts. Our findings contribute to the understanding of the evolution of insect olfactory gene families and mosquito host preference as well as having potential applied outcomes.

7.
Evol Appl ; 14(9): 2244-2257, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34603496

RESUMO

Anopheles hinesorum is a mosquito species with variable host preference. Throughout New Guinea and northern Australia, An. hinesorum feeds on humans (it is opportunistically anthropophagic) while in the south-west Pacific's Solomon Archipelago, the species is abundant but has rarely been found biting humans (it is exclusively zoophagic in most populations). There are at least two divergent zoophagic (nonhuman biting) mitochondrial lineages of An. hinesorum in the Solomon Archipelago representing two independent dispersals. Since zoophagy is a derived (nonancestral) trait in this species, this leads to the question: has zoophagy evolved independently in these two populations? Or conversely: has nuclear gene flow or connectivity resulted in the transfer of zoophagy? Although we cannot conclusively answer this, we find close nuclear relationships between Solomon Archipelago populations indicating that recent nuclear gene flow has occurred between zoophagic populations from the divergent mitochondrial lineages. Recent work on isolated islands of the Western Province (Solomon Archipelago) has also revealed an anomalous, anthropophagic island population of An. hinesorum. We find a common shared mitochondrial haplotype between this Solomon Island population and another anthropophagic population from New Guinea. This finding suggests that there has been recent migration from New Guinea into the only known anthropophagic population from the Solomon Islands. Although currently localized to a few islands in the Western Province of the Solomon Archipelago, if anthropophagy presents a selective advantage, we may see An. hinesorum emerge as a new malaria vector in a region that is now working on malaria elimination.

8.
Ecol Evol ; 9(23): 13375-13388, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871651

RESUMO

New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria-transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.

9.
PLoS Negl Trop Dis ; 11(4): e0005546, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28410388

RESUMO

BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range. METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source. CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.


Assuntos
Aedes/classificação , Aedes/crescimento & desenvolvimento , Variação Genética , Aedes/genética , Animais , Sudeste Asiático , Australásia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Indonésia , Repetições de Microssatélites , Ilhas do Pacífico , Análise de Sequência de DNA , Análise Espaço-Temporal
10.
Int J Parasitol ; 44(3-4): 225-33, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24440418

RESUMO

Anopheles farauti is the primary malaria vector throughout the coastal regions of the Southwest Pacific. A shift in peak biting time from late to early in the night occurred following widespread indoor residue spraying of dichlorodiphenyltrichloro-ethane (DDT) and has persisted in some island populations despite the intervention ending decades ago. We used mitochondrial cytochrome oxidase I (COI) sequence data and 12 newly developed microsatellite markers to assess the population genetic structure of this malaria vector in the Solomon Archipelago. With geographically distinct differences in peak A. farauti night biting time observed in the Solomon Archipelago, we tested the hypothesis that strong barriers to gene flow exist in this region. Significant and often large fixation index (FST) values were found between different island populations for the mitochondrial and nuclear markers, suggesting highly restricted gene flow between islands. Some discordance in the location and strength of genetic breaks was observed between the mitochondrial and microsatellite markers. Since early night biting A. farauti individuals occur naturally in all populations, the strong gene flow barriers that we have identified in the Solomon Archipelago lend weight to the hypothesis that the shifts in peak biting time from late to early night have appeared independently in these disconnected island populations. For this reason, we suggest that insecticide impregnated bed nets and indoor residue spraying are unlikely to be effective as control tools against A. farauti occurring elsewhere, and if used, will probably result in peak biting time behavioural shifts similar to that observed in the Solomon Islands.


Assuntos
Anopheles/genética , Anopheles/parasitologia , Insetos Vetores/genética , Insetos Vetores/parasitologia , Malária/prevenção & controle , Malária/transmissão , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Genética Populacional , Humanos , Controle de Insetos/métodos , Melanesia , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia
11.
PLoS Negl Trop Dis ; 7(8): e2361, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951380

RESUMO

BACKGROUND: The range of the Asian tiger mosquito Aedes albopictus is expanding globally, raising the threat of emerging and re-emerging arbovirus transmission risks including dengue and chikungunya. Its detection in Papua New Guinea's (PNG) southern Fly River coastal region in 1988 and 1992 placed it 150 km from mainland Australia. However, it was not until 12 years later that it appeared on the Torres Strait Islands. We hypothesized that the extant PNG population expanded into the Torres Straits as an indirect effect of drought-proofing the southern Fly River coastal villages in response to El Nino-driven climate variability in the region (via the rollout of rainwater tanks and water storage containers). METHODOLOGY/PRINCIPAL FINDINGS: Examination of the mosquito's mitochondrial DNA cytochrome oxidase I (COI) sequences and 13 novel nuclear microsatellites revealed evidence of substantial intermixing between PNG's southern Fly region and Torres Strait Island populations essentially compromising any island eradication attempts due to potential of reintroduction. However, two genetically distinct populations were identified in this region comprising the historically extant PNG populations and the exotic introduced population. Both COI sequence data and microsatellites showed the introduced population to have genetic affinities to populations from Timor Leste and Jakarta in the Indonesian region. CONCLUSIONS/SIGNIFICANCE: The Ae. albopictus invasion into the Australian region was not a range expansion out of PNG as suspected, but founded by other, genetically distinct population(s), with strong genetic affinities to populations sampled from the Indonesian region. We now suspect that the introduction of Ae. albopictus into the Australian region was driven by widespread illegal fishing activity originating from the Indonesian region during this period. Human sea traffic is apparently shuttling this mosquito between islands in the Torres Strait and the southern PNG mainland and this extensive movement may well compromise Ae. albopictus eradication attempts in this region.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/genética , Filogeografia , Aedes/classificação , Animais , Australásia , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genética Populacional , Repetições de Microssatélites , Dados de Sequência Molecular , Análise de Sequência de DNA
12.
Int J Parasitol ; 43(10): 825-35, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23747927

RESUMO

The population structure and history of the cryptic malaria vector species, Anopheles punctulatus (Doenitz), was investigated throughout Papua New Guinea and the Solomon Islands with the aim of detailing genetic subdivisions and the potential for movement through this biogeographically complex region. We obtained larval collections from over 80 sites and utilised a diverse array of molecular markers that evolve through different processes. Individuals were initially identified to species and genotyped using the ribosomal DNA second internal transcribed spacer. DNA sequencing of a single copy nuclear ribosomal protein S9 and the mitochondrial cytochrome oxidase I loci were then investigated and 12 nuclear microsatellite markers were developed and analysed. Our data revealed three genetically distinct populations--one in Papua New Guinea, the second on Buka Island (Bougainville Province, Papua New Guinea), and the third on Guadalcanal Island (Solomon Islands). Genetic differentiation within Papua New Guinea was much lower than that found in studies of other closely related species in the region. The data does suggest that A. punctulatus has undergone a population bottleneck followed by a recent population and range expansion in Papua New Guinea. Humans and regional economic growth may be facilitating this population expansion, as A. punctulatus is able to rapidly occupy human modified landscapes and traverse unsealed roads. We therefore anticipate extensive movement of this species through New Guinea--particularly into the highlands, with a potential increase in malaria frequency in a warming climate--as well as relatively unrestricted gene flow of advantageous alleles that may confound vector control efforts.


Assuntos
Anopheles/classificação , Anopheles/genética , Vetores de Doenças , Variação Genética , Animais , Anopheles/crescimento & desenvolvimento , Análise por Conglomerados , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genética Populacional , Genótipo , Larva/classificação , Larva/genética , Melanesia , Repetições de Microssatélites , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Papua Nova Guiné , Proteína S9 Ribossômica , Proteínas Ribossômicas/genética
13.
Mol Ecol ; 22(11): 2941-52, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23710896

RESUMO

Instances of parallel ecotypic divergence where adaptation to similar conditions repeatedly cause similar phenotypic changes in closely related organisms are useful for studying the role of ecological selection in speciation. Here we used a combination of traditional and next generation genotyping techniques to test for the parallel divergence of plants from the Senecio lautus complex, a phenotypically variable groundsel that has adapted to disparate environments in the South Pacific. Phylogenetic analysis of a broad selection of Senecio species showed that members of the S. lautus complex form a distinct lineage that has diversified recently in Australasia. An inspection of thousands of polymorphisms in the genome of 27 natural populations from the S. lautus complex in Australia revealed a signal of strong genetic structure independent of habitat and phenotype. Additionally, genetic differentiation between populations was correlated with the geographical distance separating them, and the genetic diversity of populations strongly depended on geographical location. Importantly, coastal forms appeared in several independent phylogenetic clades, a pattern that is consistent with the parallel evolution of these forms. Analyses of the patterns of genomic differentiation between populations further revealed that adjacent populations displayed greater genomic heterogeneity than allopatric populations and are differentiated according to variation in soil composition. These results are consistent with a process of parallel ecotypic divergence in face of gene flow.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Seleção Genética , Senécio/genética , Australásia , Evolução Biológica , Linhagem da Célula , Fluxo Gênico , Deriva Genética , Especiação Genética , Variação Genética , Genética Populacional , Genoma , Genótipo , Geografia , Dados de Sequência Molecular , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA