Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
JIMD Rep ; 32: 69-79, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27300702

RESUMO

BACKGROUND: Different pathophysiological mechanisms have been described in phenylketonuria (PKU) but the indirect metabolic consequences of metabolic disorders caused by elevated Phe or low Tyr concentrations remain partially unknown. We used a multiplatform metabolomics approach to evaluate the metabolic signature associated with Phe and Tyr. MATERIAL AND METHODS: We prospectively included 10 PKU adult patients and matched controls. We analysed the metabolome profile using GC-MS (urine), amino-acid analyzer (urine and plasma) and nuclear magnetic resonance spectroscopy (urine). We performed a multivariate analysis from the metabolome (after exclusion of Phe, Tyr and directly derived metabolites) to explain plasma Phe and Tyr concentrations, and the clinical status. Finally, we performed a univariate analysis of the most discriminant metabolites and we identified the associated metabolic pathways. RESULTS: We obtained a metabolic pattern from 118 metabolites and we built excellent multivariate models to explain Phe, Tyr concentrations and PKU diagnosis. Common metabolites of these models were identified: Gln, Arg, succinate and alpha aminobutyric acid. Univariate analysis showed an inverse correlation between Arg, alpha aminobutyric acid and Phe and a positive correlation between Arg, succinate, Gln and Tyr (p < 0.0003). Thus, we highlighted the following pathways: Arg and Pro, Ala, Asp and Glu metabolism. DISCUSSION: We obtain a specific metabolic signature related to Tyr and Phe concentrations. We confirmed the involvement of different pathophysiological mechanisms previously described in PKU such as protein synthesis, energetic metabolism and oxidative stress. The metabolomics approach is relevant to explore PKU pathogenesis.

2.
Mol Psychiatry ; 15(7): 767-76, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19238151

RESUMO

Mutations in the UPF3B gene, which encodes a protein involved in nonsense-mediated mRNA decay, have recently been described in four families with specific (Lujan-Fryns and FG syndromes), nonspecific X-linked mental retardation (XLMR) and autism. To further elucidate the contribution of UPF3B to mental retardation (MR), we screened its coding sequence in 397 families collected by the EuroMRX consortium. We identified one nonsense mutation, c.1081C>T/p.Arg361(*), in a family with nonspecific MR (MRX62) and two amino-acid substitutions in two other, unrelated families with MR and/or autism (c.1136G>A/p.Arg379His and c.1103G>A/p.Arg368Gln). Functional studies using lymphoblastoid cell lines from affected patients revealed that c.1081C>T mutation resulted in UPF3B mRNA degradation and consequent absence of the UPF3B protein. We also studied the subcellular localization of the wild-type and mutated UPF3B proteins in mouse primary hippocampal neurons. We did not detect any obvious difference in the localization between the wild-type UPF3B and the proteins carrying the two missense changes identified. However, we show that UPF3B is widely expressed in neurons and also presents in dendritic spines, which are essential structures for proper neurotransmission and thus learning and memory processes. Our results demonstrate that in addition to Lujan-Fryns and FG syndromes, UPF3B protein truncation mutations can cause also nonspecific XLMR. We also identify comorbidity of MR and autism in another family with UPF3B mutation. The neuronal localization pattern of the UPF3B protein and its function in mRNA surveillance suggests a potential function in the regulation of the expression and degradation of various mRNAs present at the synapse.


Assuntos
Transtorno Autístico/genética , Códon sem Sentido/genética , Deficiência Intelectual/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Adulto , Substituição de Aminoácidos/genética , Animais , Transtorno Autístico/complicações , Linhagem Celular , Espinhas Dendríticas/metabolismo , Regulação para Baixo , Feminino , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/complicações , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo
3.
Neurology ; 67(7): 1147-50, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16931506

RESUMO

BACKGROUND: SMN1 gene deletions cause spinal muscular atrophy, and SMN2 gene deletions have been associated with sporadic lower motor neuron diseases. OBJECTIVES: To study the frequency of abnormal SMN1 gene copy numbers and to determine whether SMN2 gene modulates the risk of amyotrophic lateral sclerosis (ALS) or the duration of evolution. METHOD: The authors studied SMN1 and SMN2 genes in 600 patients with sporadic ALS and 621 controls using a quantitative PCR method. RESULTS: The authors found an association of ALS with an abnormal copy number (one or three copies) of SMN1 gene (p < 0.0001) with an OR of 2.8 (1.8 to 4.4, 95% CI). There was no association with SMN2 copy numbers and no effect of SMN2 copies on the duration of evolution in ALS independently of SMN1 copy number. CONCLUSION: Abnormal SMN1 gene copy numbers are a genetic risk factor in sporadic amyotrophic lateral sclerosis. There was no modulator effect of the SMN2 gene.


Assuntos
Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Medição de Risco/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/diagnóstico , Análise Mutacional de DNA , Feminino , França/epidemiologia , Dosagem de Genes/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Proteínas do Complexo SMN , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor
4.
Thromb Res ; 109(4): 207-15, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12757776

RESUMO

Tissue factor pathway Inhibitor-2 (TFPI-2) is associated with extracellular matrices and plays a major role in cell migration and tumor invasion. In this study, a 4.8-kb human TFPI-2 gene 5'-flanking region was isolated, cloned and sequenced. Promoter region analysis revealed a high GC-rich content without canonical TATA and CAAT boxes but three transcription initiation sites were identified. Moreover, several putative binding sites for transcription factors were identified (MyoD, LYF1, NF-Y, GATA, oct-1, AP-1, Sp1, NF1, NF-kappa B and egr-1). To characterize potential regulatory regions, TFPI-2/luciferase promoter constructs were then transfected in human choriocarcinoma JEG-3 cells. We first showed that the minimal TFPI-2 promoter is located between -166 and -111 from the translation start site. Luciferase activity consistently increased after stimulation of JEG-3 cells by phorbol 12-myristate 13-acetate indicating that NF1, NF-kappa B and egr-1/Sp1 binding sites are crucial in inducible TFPI-2 expression. Moreover, negative regulatory regions included AP-1 binding sites were identified. This study demonstrates that the TFPI-2 gene promoter exhibits typical features of a housekeeping gene.


Assuntos
Coriocarcinoma/patologia , Glicoproteínas/genética , Regiões Promotoras Genéticas/genética , Acetato de Tetradecanoilforbol/análogos & derivados , Região 5'-Flanqueadora/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Coriocarcinoma/genética , Clonagem Molecular , Regulação da Expressão Gênica , Glicoproteínas/biossíntese , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Transcrição , Sítio de Iniciação de Transcrição , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA