Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Small ; 16(45): e2004208, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33078566

RESUMO

The discovery of ferromagnetism in atomically thin layers at room temperature widens the prospects of 2D materials for device applications. Recently, two independent experiments demonstrated magnetic ordering in two dissimilar 2D systems, CrI3 and Cr2 Ge2 Te6 , at low temperatures and in VSe2 at room temperature, but observation of intrinsic room-temperature magnetism in 2D materials is still a challenge. Here a transition at room temperature that increases the magnetization in magnetite while thinning down the bulk material to a few atom-thick sheets is reported. DC magnetization measurements prove ferrimagnetic ordering with increased magnetization and density functional theory calculations ascribe their origin to the low dimensionality of the magnetite layers. In addition, surface energy calculations for different cleavage planes in passivated magnetite crystal agree with the experimental observations of obtaining 2D sheets from non-van der Waals crystals.

3.
Adv Mater ; 32(24): e2000006, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32374432

RESUMO

Since graphene, a variety of 2D materials have been fabricated in a quest for a tantalizing combination of properties and desired physiochemical behavior. 2D materials that are piezoelectric, i.e., that allow for a facile conversion of electrical energy into mechanical and vice versa, offer applications for sensors, actuators, energy harvesting, stretchable and flexible electronics, and energy storage, among others. Unfortunately, materials must satisfy stringent symmetry requirements to be classified as piezoelectric. Here, 2D ultrathin single-crystal molybdenum oxide (MoO2 ) flakes that exhibit unexpected piezoelectric-like response are fabricated, as MoO2 is centrosymmetric and should not exhibit intrinsic piezoelectricity. However, it is demonstrated that the apparent piezoelectricity in 2D MoO2 emerges from an electret-like behavior induced by the trapping and stabilization of charges around defects in the material. Arguably, the material represents the first 2D electret material and suggests a route to artificially engineer piezoelectricity in 2D crystals. Specifically, it is found that the maximum out-of-plane piezoresponse is 0.56 pm V-1 , which is as strong as that observed in conventional 2D piezoelectric materials. The charges are found to be highly stable at room temperature with a trapping energy barrier of ≈2 eV.

4.
ACS Nano ; 14(6): 7435-7443, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32469491

RESUMO

Atomically thin metallic alloys are receiving increased attention due to their prospective applications as interconnects/contacts in two-dimensional (2D) circuits, sensors, and catalysts, among others. In this work, we demonstrate an easily scalable technique for the synthesis of 2D metallic alloys from their 3D quasicrystalline precursors. We have used aluminum (Al)-based single-phase decagonal quasicrystal Al66Co17Cu17 alloy to extract the corresponding 2D alloy structure. The 2D layered Al alloy possesses 2-fold decagonal quasicrystalline symmetry and consists of two- or three-layer-thick sheets with a lateral dimension of microns. These 2D metallic layers were combined with the atomic layers of tungsten disulfide to form the stacked heterostructures, which is demonstrated to be a stable and efficient catalyst for hydrogen evolution reaction.

5.
Adv Mater ; 32(7): e1904302, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31667920

RESUMO

As elemental main group materials (i.e., silicon and germanium) have dominated the field of modern electronics, their monolayer 2D analogues have shown great promise for next-generation electronic materials as well as potential game-changing properties for optoelectronics, energy, and beyond. These atomically thin materials composed of single atomic variants of group III through group VI elements on the periodic table have already demonstrated exciting properties such as near-room-temperature topological insulation in bismuthene, extremely high electron mobilities in phosphorene and silicone, and substantial Li-ion storage capability in borophene. Isolation of these materials within the postgraphene era began with silicene in 2010 and quickly progressed to the experimental identification or theoretical prediction of 15 of the 18 main group elements existing as solids at standard pressure and temperatures. This review first focuses on the significance of defects/functionalization, discussion of different allotropes, and overarching structure-property relationships of 2D main group elemental materials. Then, a complete review of emerging applications in electronics, sensing, spintronics, plasmonics, photodetectors, ultrafast lasers, batteries, supercapacitors, and thermoelectrics is presented by application type, including detailed descriptions of how the material properties may be tailored toward each specific application.

6.
Nano Lett ; 19(9): 6338-6345, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356089

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures have been proposed as potential candidates for a variety of applications like quantum computing, neuromorphic computing, solar cells, and flexible field effective transistors. The 2D TMDC heterostructures at the present stage face difficulties being implemented in these applications because of lack of large and sharp heterostructure interfaces. Herein, we address this problem via a CVD technique to grow thermodynamically stable heterostructure of 2H/1T' MoSe2-ReSe2 using conventional transition metal phase diagrams as a reference. We demonstrate how the thermodynamics of mixing in the MoReSe2 system during CVD growth dictates the formation of atomically sharp interfaces between MoSe2 and ReSe2, which can be confirmed by high-resolution scanning transmission electron microscopy imaging, revealing zigzag selenium-terminated interface between the epitaxial 2H and 1T' lattices. Our work provides useful insights for understanding the stability of 2D heterostructures and interfaces between chemically, structurally, and electronically different phases.

7.
Nano Lett ; 19(8): 4981-4989, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31260315

RESUMO

The light-induced selective population of short-lived far-from-equilibrium vibration modes is a promising approach for controlling ultrafast and irreversible structural changes in functional nanomaterials. However, this requires a detailed understanding of the dynamics and evolution of these phonon modes and their coupling to the excited-state electronic structure. Here, we combine femtosecond mega-electronvolt electron diffraction experiments on a prototypical layered material, MoTe2, with non-adiabatic quantum molecular dynamics simulations and ab initio electronic structure calculations to show how non-radiative energy relaxation pathways for excited electrons can be tuned by controlling the optical excitation energy. We show how the dominant intravalley and intervalley scattering mechanisms for hot and band-edge electrons leads to markedly different transient phonon populations evident in electron diffraction patterns. This understanding of how tuning optical excitations affect phonon populations and atomic motion is critical for efficiently controlling light-induced structural transitions of optoelectronic devices.

8.
Sci Adv ; 5(5): eaau9785, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31093523

RESUMO

Upcoming advancements in flexible technology require mechanically compliant dielectric materials. Current dielectrics have either high dielectric constant, K (e.g., metal oxides) or good flexibility (e.g., polymers). Here, we achieve a golden mean of these properties and obtain a lightweight, viscoelastic, high-K dielectric material by combining two nonpolar, brittle constituents, namely, sulfur (S) and selenium (Se). This S-Se alloy retains polymer-like mechanical flexibility along with a dielectric strength (40 kV/mm) and a high dielectric constant (K = 74 at 1 MHz) similar to those of established metal oxides. Our theoretical model suggests that the principal reason is the strong dipole moment generated due to the unique structural orientation between S and Se atoms. The S-Se alloys can bridge the chasm between mechanically soft and high-K dielectric materials toward several flexible device applications.

9.
Adv Mater ; 30(45): e1804218, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30198162

RESUMO

Composition and phase specific 2D transition metal dichalogenides (2D TMDs) with a controlled electronic and chemical structure are essential for future electronics. While alloying allows bandgap tunability, heterostructure formation creates atomically sharp electronic junctions. Herein, the formation of lateral heterostructures from quaternary 2D TMD alloys, by thermal annealing, is demonstrated. Phase separation is observed through photoluminescence and Raman spectroscopy, and the sharp interface of the lateral heterostructure is examined via scanning transmission electron microscopy. The composition-dependent transformation is caused by existence of miscibility gap in the quaternary alloys. The phase diagram displaying the miscibility gap is obtained from the reciprocal solution model based on density functional theory and verified experimentally. The experiments show direct evidence of composition-driven heterostructure formation in 2D atomic layer systems.

10.
Nat Nanotechnol ; 13(7): 602-609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736036

RESUMO

With the advent of graphene, the most studied of all two-dimensional materials, many inorganic analogues have been synthesized and are being exploited for novel applications. Several approaches have been used to obtain large-grain, high-quality materials. Naturally occurring ores, for example, are the best precursors for obtaining highly ordered and large-grain atomic layers by exfoliation. Here, we demonstrate a new two-dimensional material 'hematene' obtained from natural iron ore hematite (α-Fe2O3), which is isolated by means of liquid exfoliation. The two-dimensional morphology of hematene is confirmed by transmission electron microscopy. Magnetic measurements together with density functional theory calculations confirm the ferromagnetic order in hematene while its parent form exhibits antiferromagnetic order. When loaded on titania nanotube arrays, hematene exhibits enhanced visible light photocatalytic activity. Our study indicates that photogenerated electrons can be transferred from hematene to titania despite a band alignment unfavourable for charge transfer.

11.
ACS Nano ; 12(4): 3468-3476, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29481059

RESUMO

Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe2) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe2 and WSe2 regions. Applying a bending strain blue-shifted the MoSe2 and WSe2 A1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe2-rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe2 monolayer containing nanoscopic WSe2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe2 matrix and WSe2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe2, indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe2 over the unalloyed counterparts.

12.
Nat Commun ; 8(1): 1745, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170416

RESUMO

Photo-induced non-radiative energy dissipation is a potential pathway to induce structural-phase transitions in two-dimensional materials. For advancing this field, a quantitative understanding of real-time atomic motion and lattice temperature is required. However, this understanding has been incomplete due to a lack of suitable experimental techniques. Here, we use ultrafast electron diffraction to directly probe the subpicosecond conversion of photoenergy to lattice vibrations in a model bilayered semiconductor, molybdenum diselenide. We find that when creating a high charge carrier density, the energy is efficiently transferred to the lattice within one picosecond. First-principles nonadiabatic quantum molecular dynamics simulations reproduce the observed ultrafast increase in lattice temperature and the corresponding conversion of photoenergy to lattice vibrations. Nonadiabatic quantum simulations further suggest that a softening of vibrational modes in the excited state is involved in efficient and rapid energy transfer between the electronic system and the lattice.

13.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28990227

RESUMO

Alloying in 2D results in the development of new, diverse, and versatile systems with prospects in bandgap engineering, catalysis, and energy storage. Tailoring structural phase transitions using alloying is a novel idea with implications in designing all 2D device architecture as the structural phases in 2D materials such as transition metal dichalcogenides are correlated with electronic phases. Here, this study develops a new growth strategy employing chemical vapor deposition to grow monolayer 2D alloys of Re-doped MoSe2 with show composition tunable structural phase variations. The compositions where the phase transition is observed agree well with the theoretical predictions for these 2D systems. It is also shown that in addition to the predicted new electronic phases, these systems also provide opportunities to study novel phenomena such as magnetism which broadens the range of their applications.

14.
Adv Mater ; 29(35)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28707411

RESUMO

Alloying/doping in 2D material is important due to wide range bandgap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the bandgap and also reduces the growth temperature. Here, synthesis of quaternary alloys Mox W1-x S2y Se2(1-y) is reported using chemical vapor deposition. The composition of alloys is tuned by changing the growth temperatures. As a result, the bandgap can be tuned which varies from 1.61 to 1.85 eV. The detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.

15.
Langmuir ; 31(48): 13247-56, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26522375

RESUMO

Gold in the form of bulk metal mostly does not react with gases or liquids at room temperature. On the other hand, nanoparticles of gold are very reactive and useful as catalysts. The reactivity of nanoparticles depends on the size and the morphology of the nanoparticles. Gold nanostars containing copper have rough surfaces and large numbers of active sites due to tips, sides, corners, and large surface area-to-volume ratios due to their branched morphology. Here the sensitivity of the gold nanostar-polyaniline composite (average size of nanostars ∼170 nm) toward ammonia gas has been investigated. For 100 ppm ammonia, the sensitivity of the composite increased to 52% from a mere 7% value for pure polyaniline. The gold nanostar-polyaniline composite even showed a response time as short as 15 s at room temperature. The gold nanostars act as a catalyst in the nanocomposite. The stability and sensitivity at different concentrations and the selectivity for ammonia gas were also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA