Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1212031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492638

RESUMO

Introduction: Medical education should promote the development of skills and abilities that can be applied to real-world work performance. The aim of this study is to evaluate technical and methodological knowledge, as well as physician-patient communication skills, as one of the most important transversal competencies that a good physician should acquire; all this in a reliable, accurate and objective way. Methods: We present a rubric specifically designed and implemented for the evaluation of specific and transversal competencies in the physiology practical sessions, during the second year of the medical degree. The assessment consists in two evaluation tests: 1) a theoretical test that consists of multiple-choice questions. Students must demonstrate that they have acquired adequate theoretical knowledge (specific competency "to know"); 2) a practical test, in which students are evaluated by the rubric through the simulation of a medical consultation. Thus, demonstrating their ability to execute/apply what they have learned in class (specific competency "to know how to do"). They are also evaluated on the transversal competencies that we call "communication with the patient" (transversal competency "to know how to be there") and "dealing with the patient" (transversal competency "to know how to be"). Results: We evaluated whether there were differences in the grades obtained by students when the transversal competencies were not assessed (academic years 2017-2018 and 2018-2019; n = 289), and when the transversal competencies were assessed by applying the rubric in the academic years 2019-2020, 2021-2022, and 2022-2023 (n = 526). Furthermore, we present a student perception that supports the use of clinical simulation and our rubric as a good method within the competency learning process. Discussion: The acquisition of these competencies, starting from the first courses of undergraduate education, helps to raise the students' awareness in the development of a more humanized medicine, allowing a better response to the patients' needs. Our rubric, which clearly indicate the performance criteria, have become an excellent method to carry out the assessment of competencies, both for students and teachers, since they allow to obtain clear evidence of the level of acquisition and application of knowledge.

2.
Commun Biol ; 6(1): 280, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932214

RESUMO

Atherosclerosis evolves through dysregulated lipid metabolism interwoven with exaggerated inflammation. Previous work implicating the receptor for advanced glycation end products (RAGE) in atherosclerosis prompted us to explore if Diaphanous 1 (DIAPH1), which binds to the RAGE cytoplasmic domain and is important for RAGE signaling, contributes to these processes. We intercrossed atherosclerosis-prone Ldlr-/- mice with mice devoid of Diaph1 and fed them Western diet for 16 weeks. Compared to male Ldlr-/- mice, male Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis, in parallel with lower plasma concentrations of cholesterol and triglycerides. Female Ldlr-/- Diaph1-/- mice displayed significantly less atherosclerosis compared to Ldlr-/- mice and demonstrated lower plasma concentrations of cholesterol, but not plasma triglycerides. Deletion of Diaph1 attenuated expression of genes regulating hepatic lipid metabolism, Acaca, Acacb, Gpat2, Lpin1, Lpin2 and Fasn, without effect on mRNA expression of upstream transcription factors Srebf1, Srebf2 or Mxlipl in male mice. We traced DIAPH1-dependent mechanisms to nuclear translocation of SREBP1 in a manner independent of carbohydrate- or insulin-regulated cues but, at least in part, through the actin cytoskeleton. This work unveils new regulators of atherosclerosis and lipid metabolism through DIAPH1.


Assuntos
Aterosclerose , Metabolismo dos Lipídeos , Animais , Feminino , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fosfatidato Fosfatase/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Triglicerídeos/metabolismo , Forminas/genética , Camundongos Knockout
3.
Front Cardiovasc Med ; 9: 994080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407436

RESUMO

Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3'UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.

4.
Nat Rev Immunol ; 22(2): 97-111, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34099898

RESUMO

Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.


Assuntos
Microbioma Gastrointestinal , Linfócitos T , Envelhecimento , Citocinas , Microbioma Gastrointestinal/fisiologia , Humanos , Tolerância Imunológica
5.
Circulation ; 143(21): 2091-2109, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33709773

RESUMO

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.


Assuntos
Aneurisma Aórtico/fisiopatologia , Síndrome de Marfan/genética , Mitocôndrias/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Síndrome de Marfan/fisiopatologia , Camundongos
6.
Science ; 368(6497): 1371-1376, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32439659

RESUMO

The effect of immunometabolism on age-associated diseases remains uncertain. In this work, we show that T cells with dysfunctional mitochondria owing to mitochondrial transcription factor A (TFAM) deficiency act as accelerators of senescence. In mice, these cells instigate multiple aging-related features, including metabolic, cognitive, physical, and cardiovascular alterations, which together result in premature death. T cell metabolic failure induces the accumulation of circulating cytokines, which resembles the chronic inflammation that is characteristic of aging ("inflammaging"). This cytokine storm itself acts as a systemic inducer of senescence. Blocking tumor necrosis factor-α signaling or preventing senescence with nicotinamide adenine dinucleotide precursors partially rescues premature aging in mice with Tfam-deficient T cells. Thus, T cells can regulate organismal fitness and life span, which highlights the importance of tight immunometabolic control in both aging and the onset of age-associated diseases.


Assuntos
Senilidade Prematura/imunologia , Proteínas de Ligação a DNA/deficiência , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Multimorbidade , Linfócitos T/metabolismo , Fatores de Transcrição/deficiência , Senilidade Prematura/genética , Senilidade Prematura/prevenção & controle , Animais , Síndrome da Liberação de Citocina/imunologia , Proteínas de Ligação a DNA/genética , Feminino , Deleção de Genes , Inflamação/genética , Inflamação/imunologia , Longevidade , Masculino , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , NAD/administração & dosagem , NAD/farmacologia , Aptidão Física , Linfócitos T/ultraestrutura , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
7.
Cell Rep ; 28(3): 773-791.e7, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315054

RESUMO

Exquisite regulation of energy homeostasis protects from nutrient deprivation but causes metabolic dysfunction upon nutrient excess. In human and murine adipose tissue, the accumulation of ligands of the receptor for advanced glycation end products (RAGE) accompanies obesity, implicating this receptor in energy metabolism. Here, we demonstrate that mice bearing global- or adipocyte-specific deletion of Ager, the gene encoding RAGE, display superior metabolic recovery after fasting, a cold challenge, or high-fat feeding. The RAGE-dependent mechanisms were traced to suppression of protein kinase A (PKA)-mediated phosphorylation of its key targets, hormone-sensitive lipase and p38 mitogen-activated protein kinase, upon ß-adrenergic receptor stimulation-processes that dampen the expression and activity of uncoupling protein 1 (UCP1) and thermogenic programs. This work identifies the innate role of RAGE as a key node in the immunometabolic networks that control responses to nutrient supply and cold challenges, and it unveils opportunities to harness energy expenditure in environmental and metabolic stress.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Adipócitos/enzimologia , Tecido Adiposo/enzimologia , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético , Jejum/metabolismo , Jejum/fisiologia , Humanos , Lipólise/genética , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Fosforilação , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Termogênese/genética , Transplante Homólogo , Proteína Desacopladora 1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
EBioMedicine ; 26: 165-174, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29239839

RESUMO

The biochemical, ionic, and signaling changes that occur within cardiomyocytes subjected to ischemia are exacerbated by reperfusion; however, the precise mechanisms mediating myocardial ischemia/reperfusion (I/R) injury have not been fully elucidated. The receptor for advanced glycation end-products (RAGE) regulates the cellular response to cardiac tissue damage in I/R, an effect potentially mediated by the binding of the RAGE cytoplasmic domain to the diaphanous-related formin, DIAPH1. The aim of this study was to investigate the role of DIAPH1 in the physiological response to experimental myocardial I/R in mice. After subjecting wild-type mice to experimental I/R, myocardial DIAPH1 expression was increased, an effect that was echoed following hypoxia/reoxygenation (H/R) in H9C2 and AC16 cells. Further, compared to wild-type mice, genetic deletion of Diaph1 reduced infarct size and improved contractile function after I/R. Silencing Diaph1 in H9C2 cells subjected to H/R downregulated actin polymerization and serum response factor-regulated gene expression. Importantly, these changes led to increased expression of sarcoplasmic reticulum Ca2+ ATPase and reduced expression of the sodium calcium exchanger. This work demonstrates that DIAPH1 is required for the myocardial response to I/R, and that targeting DIAPH1 may represent an adjunctive approach for myocardial salvage after acute infarction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Forminas , Regulação da Expressão Gênica , Humanos , Camundongos , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transdução de Sinais/genética , Trocador de Sódio e Cálcio/genética
9.
Mol Nutr Food Res ; 59(9): 1865-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26387852

RESUMO

SCOPE: The increased prevalence of cardiovascular diseases (CVDs) has been hypothesized to be the result of an increased exposure to a host of atherogenic environmental factors, paramount among them being unhealthy dietary habits. Long-chain n-3 polyunsaturated fatty acids (PUFAs) have been shown to have cardio protective effects, partially due to their ability to regulate gene expression. In this regard, increasing attention has been devoted to the role of miRNAs as regulators of multiple metabolic pathways whose deregulation has been associated with CVD risk. In this work we investigated whether miRNA expression was regulated by docosahexanoic acid, conjugated linoleic acid and cholesterol in Caco-2 cells. RESULTS: Among the modulated miRNAs, miR-107 was differentially expressed by all treatments and this modulation was independent of its hosting gene, panthothenate kinase 1, possibly through its own promoter, which contains binding sites for metabolically relevant transcription factors. Among the putative target genes of miR-107, we found some genes with key roles in circadian rhythm. Specifically, we demonstrated that binding of miR-107 to the circadian locomotor output cycles kaput gene results in the deregulation of the circadian rhythm of the cells. CONCLUSION: Since chronodisruption has been linked to metabolic disorders such as type 2 diabetes, atherosclerosis, obesity, and CVD, our findings suggest that miR-107 could represent a new approach for pharmacological treatment of these diseases.

10.
Exp Cell Res ; 315(19): 3453-65, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19683524

RESUMO

Oligodendrocytes (OLs), the myelin-producing cells of the central nervous system, segregate different surface subdomains at the plasma membrane as do other differentiated cells such as polarized epithelia and neurons. To generate the complex membrane system that characterizes myelinating OLs, large amounts of membrane proteins and lipids need to be synthesized and correctly targeted. In polarized epithelia, a considerable fraction of apical proteins are transported by an indirect pathway involving a detour to the basolateral membrane before being internalized and transported across the cell to the apical membrane by a process known as transcytosis. The apical recycling endosome (ARE) or its equivalent, the subapical compartment (SAC), of hepatocytes is an intracellular trafficking station involved in the transcytotic pathway. MAL2, an essential component of the machinery for basolateral-to-apical transcytosis, is an ARE/SAC resident protein. Here, we show that, after differentiation, murine oligodendrocyte precursor and human oligodendroglioma derived cell lines, Oli-neu and HOG, respectively, up-regulate the expression of MAL2 and accumulate it in an intracellular compartment, exhibiting a peri-centrosomal localization. In these oligodendrocytic cell lines, this compartment shares some of the main features of the ARE/SAC, such as colocalization with Rab11a, sensitivity to disruption of the microtubule cytoskeleton with nocodazole, and lack of internalized transferrin. Therefore, we suggest that the MAL2-positive compartment in oligodendrocytic cells could be a structure analogous to the ARE/SAC and might have an important role in the sorting of proteins and lipids for myelin assembly during oligodendrocyte differentiation.


Assuntos
Proteínas de Membrana/análise , Oligodendroglia/química , Oligodendroglioma/química , Proteolipídeos/análise , Proteínas de Transporte Vesicular/análise , Animais , Diferenciação Celular , Linhagem Celular , Polaridade Celular , Humanos , Proteínas de Membrana/genética , Camundongos , Bainha de Mielina , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Oligodendroglia/citologia , Oligodendroglioma/patologia , Transporte Proteico , Proteolipídeos/genética , Regulação para Cima , Proteínas de Transporte Vesicular/genética
11.
Mol Biol Cell ; 20(16): 3751-62, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19553470

RESUMO

MAL, a compact hydrophobic, four-transmembrane-domain apical protein that copurifies with detergent-resistant membranes is obligatory for the machinery that sorts glycophosphatidylinositol (GPI)-anchored proteins and others to the apical membrane in epithelia. The mechanism of MAL function in lipid-raft-mediated apical sorting is unknown. We report that MAL clusters formed by two independent procedures-spontaneous clustering of MAL tagged with the tandem dimer DiHcRED (DiHcRED-MAL) in the plasma membrane of COS7 cells and antibody-mediated cross-linking of FLAG-tagged MAL-laterally concentrate markers of sphingolipid rafts and exclude a fluorescent analogue of phosphatidylethanolamine. Site-directed mutagenesis and bimolecular fluorescence complementation analysis demonstrate that MAL forms oligomers via xx intramembrane protein-protein binding motifs. Furthermore, results from membrane modulation by using exogenously added cholesterol or ceramides support the hypothesis that MAL-mediated association with raft lipids is driven at least in part by positive hydrophobic mismatch between the lengths of the transmembrane helices of MAL and membrane lipids. These data place MAL as a key component in the organization of membrane domains that could potentially serve as membrane sorting platforms.


Assuntos
Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Mielina/metabolismo , Proteolipídeos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/genética , Glicosilfosfatidilinositóis/metabolismo , Humanos , Lipídeos de Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas da Mielina/química , Proteínas da Mielina/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina , Conformação Proteica , Proteolipídeos/química , Proteolipídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA