Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37895340

RESUMO

The current study investigates the formation of microencapsulated geraniol powder, with the exopolysaccharide EPS-K1B3 produced by Halomonas caseinilytica K1, as wall material, using spray-drying. Evaluation of the antimicrobial activity of the functional emulsions, prepared at either pH 5 or pH 7, was carried out against Gram-positive (Listeria innocua (ATCC 33090)) and Gram-negative (Escherichia coli (DSM682)) bacterial strains. Results showed prolonged antimicrobial efficacy until 30 days of incubation for geraniol microcapsules compared to wet geraniol emulsions, which could confirm the ability of the spray-drying process to protect encapsulated geraniol for a longer period. The highest antimicrobial efficacy of geraniol microcapsules was observed against L. innocua at pH 5. Therefore, the influence of pH on the functional property of geraniol microcapsules could be highlighted beside the targeted bacterial strain.

2.
J Sci Food Agric ; 103(11): 5221-5230, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37017953

RESUMO

BACKGROUND: This study focused on the valorization of prickly pear (PP) fruit (Opuntia ficus-indica) into vinegar by spontaneous surface fermentation on different starting matrices (with/without the addition of sucrose and with/without PP peel in the raw material). Different parameters were monitored during the fermentation process in terms of their physicochemical and biological properties. RESULTS: Physicochemical and phytochemical analysis revealed significant differences depending on the starting matrix. An increase in total phenolic content (TPC) was observed for the majority of samples when transformed from PP juice into PP vinegar revealing the role of fermentation in enhancing the bioactive compounds content. Better antioxidant and antibacterial activity were detected for vinegar samples compared with the initial starting matrix. Using whole PP fruit resulted in better TPC and antioxidant activity; in contrast, sugar addition had no significant effect on any studied data. Analysis of variance, taking into account the four factors that were studied (matrix, variety, with/without peel, and with/without sugar), demonstrated that only the factor 'presence or absence of the peel' had a significant influence on the TPC values. CONCLUSION: This study demonstrated that both whole PP fruit and PP juice could be used as new raw materials for vinegar production. © 2023 Society of Chemical Industry.


Assuntos
Frutas , Opuntia , Frutas/química , Ácido Acético/análise , Fermentação , Antioxidantes/análise , Fenóis/análise , Opuntia/química , Açúcares/análise
3.
Environ Sci Pollut Res Int ; 29(15): 22043-22055, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34773587

RESUMO

Large quantities of waste biomass are generated annually worldwide by many industries and are vastly underutilized. However, these wastes contain sugars and other dissolved organic matter and therefore can be exploited to produce microbial biopolymers. In this study, four selected Halomonas strains, namely, Halomonas caseinilytica K1, Halomonas elongata K4, Halomonas smyrnensis S3, and Halomonas halophila S4, were investigated for the production of exopolysaccharides (EPS) using low-cost agro-industrial wastes as the sole carbon source: cheese whey, grape pomace, and glycerol. Interestingly, both yield and monosaccharide composition of EPS were affected by the carbon source. Glucose, mannose, galactose, and rhamnose were the predominant monomers, but their relative molar ratio was different. Similarly, the average molecular weight of the synthesized EPS was affected, ranging from 54.5 to 4480 kDa. The highest EPS concentration (446 mg/L) was obtained for H. caseinilytica K1 grown on cheese whey that produced an EPS composed mostly of galactose, rhamnose, glucose, and mannose, with lower contents of galacturonic acid, ribose, and arabinose and with a molecular weight of 54.5 kDa. Henceforth, the ability of Halomonas strains to use cost-effective substrates, especially cheese whey, is a promising approach for the production of EPS with distinct physicochemical properties suitable for various applications.


Assuntos
Halomonas , Resíduos Industriais , Peso Molecular , Monossacarídeos , Polissacarídeos Bacterianos/química
4.
Carbohydr Polym ; 256: 117523, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483044

RESUMO

EPS-BMS, is to our knowledge, the first high molecular weight exopolysaccharide from potential probiotic Leuconostoc citreum-BMS strain that consists on a mixture of α-(1,6)-dextran branched at the third position and ß-(2,6)-levan. This sample exhibited interesting rheological and emulsifying properties under different conditions. Steady shear experiments proved that EPS-BMS had a pseudoplastic behavior without thixotropic properties. Interestingly, pseudoplasticity was maintained even under stress conditions of temperature, pH and salts, which could provide some sensory properties for food products such as mouth feel. Dynamic oscillatory measurements reflected a liquid-like behavior of the sample regardless of the studied EPS concentration, pH, temperature and ionic force. Results related to the emulsifying as well as interfacial properties showed that EPS-BMS had great potential to be applied as emulsifier and/or emulsion stabilizer in both neutral and acidic conditions. Based on the properties reported in this work, EPS-BMS could be potentially applied in the food industry.


Assuntos
Dextranos/química , Emulsificantes/química , Frutanos/química , Leuconostoc/química , Polissacarídeos Bacterianos/química , Probióticos/química , Culinária/métodos , Dextranos/isolamento & purificação , Emulsificantes/isolamento & purificação , Frutanos/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Leuconostoc/metabolismo , Polissacarídeos Bacterianos/isolamento & purificação , Probióticos/metabolismo , Reologia , Sais/química , Percepção Gustatória/fisiologia , Temperatura
5.
3 Biotech ; 10(9): 395, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32832343

RESUMO

In this study, we firstly reported the production and the structural characterization of a novel hetero-exopolysaccharide namely EPS-K2 from the extremely halophilc Halomonas smyrnensis K2. Results revealed that EPS-K2 was mainly composed of three monosaccharides including mannose (66.69%), glucose (19.54%) and galactose (13.77%). EPS-K2 showed high thermostability with a degradation temperature around 260 °C, which could make it a suitable candidate for application in thermal processes. Moreover, EPS-K2 showed attractive functional properties. In fact, it exhibited potent antioxidant activity in a dose-dependent manner as assessed in analyses of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, iron chelating and DNA protection ability. Furthermore, EPS-K2 showed strong adhesion inhibition activity against Enterococcus faecalis (75.52 ± 3.35%) and Escherichia coli (61.95 ± 2.48%) at 1 g/l concentration, as well as a high biofilm disruption activity especially against E. coli (70.73 ± 2.78%), at 2 g/l concentration. According to its biotechnological properties, EPS-K2 could be exploited as functional ingredient in food, biomedicine, and pharmaceutical industries.

6.
Environ Sci Pollut Res Int ; 27(31): 39402-39412, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32642904

RESUMO

The present study focused on the full valorization of the tomato by-product, also known as tomato pomace consisting mainly of tomato peels and tomato seeds, by recovering natural antioxidants and edible oil, and subsequently reutilizing the leftover solid residues for the production of low-cost biosorbent. The tomato peel extract recovered using ethanol as food-grade solvent contained high phenol and flavonoid contents (199.35 ± 0.35-mg gallic acid equivalents (GAE)/g and 102.10 ± 0.03-mg quercetin equivalent (QE)/g, respectively). Even its lower content of lycopene (3.67 ± 0.04 mg/100 g), tomato peel extract showed potent antioxidant activity and can be therefore used as natural antioxidants either for food or cosmetic applications. High nutritional quality edible oil (17.15%) was extracted from tomato seeds and showed richness in unsaturated fatty acids (74.62%), with linoleic acid being the most abundant polyunsaturated fatty acid (49.70%). After recovery of these valuable compounds, the extraction solid leftovers were used to produce low-cost biosorbent tested for dye removal. Results showed that the highest biosorption yields were increasingly attributed to the acidic, direct, anthraquinone, then reactive dyes. Overall, the obtained results strongly support the complete utilization of tomato pomace for the recovery of valuable compounds and the sequential production of low-cost biosorbent.


Assuntos
Solanum lycopersicum , Antioxidantes , Licopeno , Fenóis/análise , Extratos Vegetais , Sementes/química
7.
Int J Biol Macromol ; 164: 95-104, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673722

RESUMO

Production of extracellular polysaccharides by halophilic Archaea and Bacteria has been widely reported and the members of the genus Halomonas have been identified as the most potential producers. In the present work, a novel exopolysaccharide (EPS-S6) produced by the extremely halotolerant newly isolated Halomonas elongata strain S6, was characterized. According to the HPAE-PAD results, EPS-S6 was mainly composed of glucosamine, mannose, rhamnose and glucose (1:0.9:0.7:0.3). EPS-S6 was highly negatively charged and its molecular weight was about 270 kDa. Studies on its functional properties showed that EPS-S6 had several potential features. It has noticeable antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) inhibition and DNA protection, good ability to inhibit and to disrupt pathogenic biofilms, excellent flocculation of kaolin suspension and interesting emulsifying properties at acidic, neutral and basic pH. Therefore, EPS-S6 could have potential biotechnological concern in several fields such as in food, cosmetic and environmental industries.


Assuntos
Halomonas/química , Polissacarídeos Bacterianos/isolamento & purificação , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Floculação , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Tolerância ao Sal , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Açúcares/análise , Termogravimetria
8.
Int J Biol Macromol ; 138: 658-666, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344416

RESUMO

Ten Halomonas strains were screened from different Tunisian hypersaline environments for the production of exopolysaccharides (EPS), characterized and identified basing on 16S rRNA gene sequencing. EPS production was therefore studied using two different culture media M1 (complex medium) and M2 (semi-complex medium). Selected isolates produced different EPS amounts ranging from 86 to 170 mg L-1 and 26 to 105 mg L-1 when grown on M1 and M2, respectively. The use of M1 encouraged stronger bacterial growth associated with greater EPS production compared to M2. Nevertheless, the highest EPS yield (YEPS/X) was observed for strains grown on M2. When cultivated on M1, all isolates produced EPS exhibiting almost the same monosaccharide profile with mannose, glucose and arabinose being the main monomers. However, the produced EPS on M2 were characterized by heterogeneous monosaccharide profiles among the different species, mostly consisting of glucomannan that could be a versatile material used for many further applications.


Assuntos
Meio Ambiente , Halomonas/fisiologia , Polissacarídeos Bacterianos/biossíntese , Solução Salina Hipertônica , Fenômenos Químicos , Meios de Cultura , Geografia , Halomonas/classificação , Monossacarídeos , Filogenia , Tunísia
9.
Colloids Surf B Biointerfaces ; 181: 25-30, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31121378

RESUMO

This work aims to encapsulate nisin by complexation with exopolysaccharides (EPS), produced by Bacillus tequilensis-GM and Leuconostoc citreum-BMS, namely EPS-GM and EPS-BMS, respectively, using spray-drying technique, and to evaluate the effect of this encapsulation on the structure of nisin. Results related to suspensions turbidity showed that EPS/nisin complexes were formed through electrostatic attractions. These interactions were confirmed by Fourier transform infrared (FTIR) analysis. Scanning electron microscopy (SEM) micrographs of the spray-dried complexes revealed the presence of well-separated spherical microcapsules. Besides, results obtained by UV spectra showed that no significant changes occurred on EPS-GM/nisin microcapsules suggesting that this EPS may act as protective agent of nisin structure against spray-drying conditions.


Assuntos
Bacillus/química , Dessecação , Leuconostoc/química , Nisina/química , Polissacarídeos/química , Substâncias Protetoras/química , Bacillus/metabolismo , Leuconostoc/metabolismo , Tamanho da Partícula , Polissacarídeos/biossíntese , Substâncias Protetoras/metabolismo , Eletricidade Estática , Propriedades de Superfície
10.
Int J Biol Macromol ; 133: 786-794, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004646

RESUMO

The probiotic features of strain GM newly isolated from Tunisian spontaneously fermented goat milk and identified as Bacillus tequilensis-GM were assessed. Strain GM showed high resistance to saliva (90.64%), gastric juice (88.55%), intestinal juice (72.83%) and resistance to bile salts (65.22%), was able to act against Listeria monocytogenes ATCC 15313, Escherichia coli ATCC 25922 and Enterococcus feacalis ATCC 25912, showed high surface hydrophobicity (77.3%) and was sensitive to most of the studied antibiotics. Strain GM did not exhibit any hemolytic activity whereas it was able to produce protease, amylase and ß-galactosidase. Moreover, results showed that strain GM produced high molecular weight ß-(2 → 6)-levan with high ability to inhibit and to disrupt pathogenic biofilms and with high ability to reduce syneresis of sucrose-supplemented skimmed milk. B. tequilensis-GM can therefore be suitable to be used as starter culture in fermented dairy products, since it possesses desirable probiotic properties in addition to its ability to produce levan.


Assuntos
Bacillus/metabolismo , Fermentação , Frutanos/química , Frutanos/isolamento & purificação , Leite/microbiologia , Probióticos/metabolismo , Animais , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Ácidos e Sais Biliares/metabolismo , Biofilmes/efeitos dos fármacos , Frutanos/biossíntese , Frutanos/farmacologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Cabras , Humanos , Interações Hidrofóbicas e Hidrofílicas
11.
Colloids Surf B Biointerfaces ; 167: 516-523, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29729629

RESUMO

The present study aims to evaluate the interactions between four exopolysaccharides (EPS) produced by probiotic bacteria and sodium caseinate (Cas) in order to simulate their behavior in dairy products. Complexation between the produced EPS samples and Cas was investigated as a function of polysaccharide to protein ratio. The highest turbidity and average size of complexes were formed at an EPS/Cas ratio of 3 (corresponding to 1 g/L of EPS and 0.33 g/L of Cas) as a result of the combination of individual complexes to form aggregates. Zeta potential measurements and Cas surface hydrophobicity results suggested that complex formation occurred essentially through electrostatic attractions with a possible contribution of hydrophobic interaction for EPS-GM which was produced by Bacillus tequilensis-GM. Afterwards, the effect of pH on the complexation between biopolymers was studied when EPS and Cas concentrations were maintained constant at 1 and 0.33 g/L, respectively. pH was adjusted to 3.0 and 3.5, respectively. Results showed that the highest amount and sizes of EPS/Cas complexes were formed at pH 3.5 and that EPS-GM enabled to obtain the biggest and highest amount of aggregates. Therefore, the obtained results support the fact that the simultaneous presence of EPS and Cas in dairy products results in complexes formation via electrostatic interactions depending on EPS/Cas ratio and pH of the medium.


Assuntos
Bacillus/metabolismo , Caseínas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Probióticos/metabolismo , Ânions/química , Ânions/metabolismo , Bacillus/ultraestrutura , Caseínas/química , Caseínas/ultraestrutura , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Tamanho da Partícula , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/ultraestrutura , Ligação Proteica , Eletricidade Estática
12.
Int J Biol Macromol ; 108: 719-728, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29080817

RESUMO

In this work, four exopolysaccharide-producing lactic acid bacteria (LAB) strains, newly isolated from Tunisian spontaneously fermented foods and beverages, namely bovine and turkey meat sausages (BMS and TMS), date palm sap (DPS) and cow milk (CM), were identified as Leuconostoc citreum-BMS, Leuconostoc mesenteroides-TMS, Pediococcus pentosaceus-DPS and Leuconostoc pseudomesenteroides-CM, respectively. The isolated strains showed the ability to withstand simulated human gastrointestinal (GI) tract conditions (low pH, lysozyme, bile salts, pepsin and pancreatin) and showed high surface hydrophobicity (79-90%), besides their ability to act against Escherichia coli and Listeria monocytogenes and to produce exopolysaccharides (EPS). Therefore, these isolates can be served as potential probiotics. The produced EPS were growth-associated suggesting that they are primary metabolites. The molecular weights were higher than 106Da using HPLC-SEC. 2D-NMR results indicated that all the samples were mixtures of dextran and levan, except for EPS-CM which was a levan-type EPS. Furthermore, the EPS samples showed an abitlity to inhibit and to disrupt pathogenic biofilms and showed high thermostability studied via differential scanning calorimetry (DSC) with melting points higher than 224°C making them promising to be used in thermal processed foods.


Assuntos
Lactobacillales/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Probióticos/metabolismo , Antibacterianos/farmacologia , Antibiose , Ácidos e Sais Biliares/farmacologia , Biofilmes , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Lactobacillales/química , Lactobacillales/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana , Estrutura Molecular , Peso Molecular , Monossacarídeos , Polissacarídeos Bacterianos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Environ Sci Pollut Res Int ; 24(28): 22196-22203, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28795322

RESUMO

The chemical composition and the antioxidant properties of Capsicum annum discarded seeds from processing industry with their corresponding extracted oil were investigated. C. annum seeds had high levels of crude proteins (18.30%), crude oil (11.04%), and dietary fibers (60.96%). The lipophilic fraction of C. annum seeds showed higher radical scavenging activity compared to their hydrophilic fraction, while this latter exhibited the highest reducing power. The results of fatty acid composition showed that fatty acids present in C. annum seed oil were mainly polyunsaturated (84.23%), with linoleic acid being the major polyunsaturated fatty acid (70.93%). The major monounsaturated fatty acid was oleic acid (12.18%), while the main saturated fatty acid was palmitic acid (11.90%). C. annum seed oil showed high absorbance in the UV-B, UV-A, and visible ranges. Owing to their composition, C. annum seeds discarded from pepper processing industry as by-product could be potentially used as high added-value ingredients in some food or nutraceutical formulations because they are well endowed with essential nutriments required for human health.


Assuntos
Antioxidantes/análise , Capsicum/química , Indústria de Processamento de Alimentos , Óleos de Plantas/análise , Sementes/química , Humanos , Micronutrientes/análise , Ácido Oleico/análise , Ácido Palmítico/análise
14.
Food Chem ; 233: 476-482, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28530601

RESUMO

Traditional Tunisian butter (TTB) is one of the most appreciated dairy products in Tunisia. Herein, the storage stability of TTB enriched with antioxidants from tomato processing by-products (TPB) was evaluated during 60days of storage at 4°C. TPB extract contains significant amounts of lycopene and phenolics. TTB enriched with 400mg of TPB extract/kg of TTB revealed the lowest peroxide values at all the determination intervals. Adding 400mg of TPB extract/kg of TTB did not exhibit any undesired effect on lactic bacteria which are necessary for development of aroma and chemical properties of TTB. However, raw TTB and highly enriched TTB (800mg of TPB extract/kg of TTB) displayed higher lipid peroxidation. The detrimental effect of high antioxidant amounts on TTB stability could be due to a possible pro-oxidant character. Thus, appropriate supplementation of TPB extract could be used in TTB as a protective agent against lipid peroxidation to extend its shelf-life up to two months.


Assuntos
Antioxidantes/química , Manteiga/análise , Armazenamento de Alimentos , Extratos Vegetais/química , Solanum lycopersicum/química , Peroxidação de Lipídeos , Tunísia
15.
Eng Life Sci ; 17(3): 226-236, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32624770

RESUMO

Newly isolated yeasts from different Tunisian microhabitats, such as soil, milk, olive brine, vinegar, and from olive mill wastewater-contaminated biotopes were extensively studied for their biochemical arsenal and morphological features, i.e. cell, ascospore, and lipid body morphology. All strains were classified into the Ascomycota phylum. However, they showed great functional diversity, including different morphological and biochemical features, lipid production ability, and fatty acid profiles. Accordingly, the strains were placed in three different groups: Group I, which includes Candida species; Group II (Pichia and related); and Group III (Kluyveromyces marxianus strain CC1). Group I and II were characterized by a high percentage of oleic acid (41.6-65.3% of total lipids) while in Group III, linoleic acid was the major fatty acid (37.2%). Members of Group I and II were further grouped into subgroups according to their fatty acid composition. Among the newly isolated strains, Pichia etchellsii BM1 was able to accumulate around 25% wt/wt lipid per dry cell mass and thus characterized as oleaginous. Some other strains, such as Candida metapsilosis strain EL2, C. parapsilosis strain LV2, C. pararugosa strain BM24, and K. marxianus strain CC1, which are able to produce extracellular lipases, may be of interest for specific environmental applications and/or for the production of novel lipases.

16.
Environ Sci Pollut Res Int ; 23(7): 6783-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26662789

RESUMO

The aim of this study was to assess the potential of newly isolated yeast strains Schwanniomyces etchellsii M2 and Candida pararugosa BM24 to produce yeast biomass on olive mill wastewater (OMW). Maximum biomass yield was obtained at 75% (v/v) OMW, after 96 h of incubation at 30 °C and 5% (v/v) inoculum size. The optimal carbon/nitrogen (C/N) ratio was in the range of 8:1 to 10:1, and ammonium chloride was selected as the most suitable nitrogen source. Under these conditions, a maximum biomass production of 15.11 and 21.68 g L(-1) was achieved for Schwanniomyces etchellsii M2 and Candida pararugosa BM24, respectively. Proteins were the major constituents of yeast cells (35.9-39.4% dry weight), lipids were 2.8-5% dry weight, and ash ranged from 4.8 to 9.5 % dry weight. Besides biomass production, yeast strains were also able to reduce toxicity and polluting parameter levels of the spent OMW-based medium. The practical results presented show that pH rose from initial value of 5.5 to 7.24-7.45 after fermentation. Approximately 23.1-41.4% of the chemical oxygen demand (COD) and 15.4-19.2% of the phenolic compounds were removed. The removal of phenolic compounds was associated with their biodegradation and their partial adsorption on yeast cells.


Assuntos
Candida/crescimento & desenvolvimento , Olea/química , Saccharomycetales/crescimento & desenvolvimento , Compostos de Amônio/análise , Compostos de Amônio/metabolismo , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Biomassa , Fermentação , Resíduos Industriais/análise , Fenóis/análise , Fenóis/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/microbiologia , Purificação da Água/métodos
17.
Food Chem ; 188: 8-15, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041157

RESUMO

Three Tunisian date varieties, Deglet Nour, Kentichi and Allig, served to produce syrups and powders, which were then examined for their physico-chemical composition and antioxidant properties. Different proportions of these sweetening-like agents were incorporated to produce nine different formulations of dairy desserts, with lower amount of added sugars to avoid any artificial flavoring or coloring agents. Sensory and color evaluation data revealed that incorporating Deglet Nour and Kentichi syrup offers the most desirable formulation. Furthermore, syrup polysaccharides and fibers contribute to better maintain the final product texture. In addition, date by-products create a good source of natural thickening agents, involved in enhancing apparent viscosity and spontaneous exudation. Thanks to their high content in phenolic compounds, date by-products considerably improve antioxidant activities of the formulated desserts. Therefore, they could be valued as natural ingredients in the formulation of novel dairy products with high nutritional-properties.


Assuntos
Antioxidantes/química , Laticínios/análise , Phoeniceae/química , Aromatizantes , Edulcorantes
18.
J Hazard Mater ; 183(1-3): 62-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20678864

RESUMO

A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H(2)O(2)/ultraviolet radiations) at 25°C and ((Al-Fe)PILC/H(2)O(2)) at 50°C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H(2)O(2)), system operating at 50°C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H(2)O(2)) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.


Assuntos
Peróxido de Hidrogênio/química , Resíduos Industriais/prevenção & controle , Olea , Poluentes Químicos da Água/química , Alumínio , Silicatos de Alumínio , Anaerobiose , Biodegradação Ambiental , Catálise , Argila , Flavonoides , Ferro , Oxirredução , Fenóis , Polifenóis , Temperatura , Poluentes Químicos da Água/metabolismo
19.
J Agric Food Chem ; 55(12): 4877-82, 2007 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-17497879

RESUMO

Hydroxytyrosol, a naturally occurred orthodiphenolic antioxidant molecule found in olive oil and olive mill wastewaters, was obtained from the wet hydrogen peroxide photocatalytic oxidation of its monophenolic precursor tyrosol. The liquid-phase oxidation of tyrosol to hydroxytyrosol was performed by use of an iron-containing heterogeneous catalyst (Al-Fe)PILC with the assistance of UV irradiation at 254 nm and at room temperature. The spectroscopic and HPLC data of the synthesized compound proved to coincide fully with those of a pure sample obtained by continuous countercurrent extraction. This reaction was found to be light-induced. The hydroxytyrosol synthesis reaction reached its maximum yield of 64.36% under the optimized operating conditions of 3.6 mM tyrosol, 0.5 g L(-1) catalyst, and 10(-2) M H2O2 with the assistance of UV light. Increasing the initial hydrogen peroxide concentration more than 10(-2) M has a diminishing return on the reaction efficiency. Catalyst can be recuperated by means of filtration and then reused in a next run after regeneration since its activity did not significantly decrease (<10%). The reaction synthesis is operationally simple and could find application for industrial purposes.


Assuntos
Antioxidantes/síntese química , Álcool Feniletílico/análogos & derivados , Antioxidantes/efeitos da radiação , Catálise , Cinética , Álcool Feniletílico/síntese química , Álcool Feniletílico/metabolismo , Álcool Feniletílico/efeitos da radiação , Fotoquímica , Termodinâmica , Raios Ultravioleta
20.
J Hazard Mater ; 140(1-2): 264-70, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-16979290

RESUMO

A sulfate-reducing bacterium, was isolated from a 6 month trained enrichment culture in an anaerobic media containing phosphogypsum as a sulfate source, and, designated strain SA2. Cells of strain SA2 were rod-shaped, did not form spores and stained Gram-negative. Phylogenetic analysis of the 16S rRNA gene sequence of the isolate revealed that it was related to members of the genus Desulfomicrobium (average sequence similarity of 98%) with Desulfomicrobium baculatum being the most closely related (sequence similarity of 99%). Strain SA2 used thiosulfate, sulfate, sulfite and elemental sulfur as electron acceptors and produced sulfide. Strain SA2 reduced sulfate contained in 1-20g/L phosphogypsum to sulfide with reduction of sulfate contained in 2g/L phosphogypsum being the optimum concentration. Strain SA2 grew with metalloid, halogenated and non-metal ions present in phosphogypsum and with added high concentrations of heavy metals (125ppm Zn and 100ppm Ni, W, Li and Al). The relative order for the inhibitory metal concentrations, based on the IC(50) values, was Cu, Te>Cd>Fe, Co, Mn>F, Se>Ni, Al, Li>Zn.


Assuntos
Sulfato de Cálcio/metabolismo , Metais Pesados/toxicidade , Fósforo/metabolismo , Bactérias Redutoras de Enxofre/citologia , Bactérias Redutoras de Enxofre/isolamento & purificação , Bactérias Gram-Negativas , Filogenia , Bactérias Redutoras de Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA