Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
RSC Adv ; 14(28): 19945-19952, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38903673

RESUMO

With the increasing application of lithium-ion batteries, the demand for high energy density, high-rate performance and high stability lithium-ion batteries is becoming more and more urgent. Ti2CO2 MXene, as a two-dimensional material with multilayer atomic structure and multiple active sites, has great advantages in lithium-ion battery electrode materials. However, the original Ti2CO2 MXene has been unable to meet the requirements of lithium-ion batteries due to its semiconductor properties. Doping is an effective means to regulate the conductivity and electrochemical properties of Ti2CO2 and improve the capacity of lithium-ion batteries and other energy storage devices. Hence, we use first-principles calculations to study the effect of V atom doping on the adsorption and diffusion of Li on the MXene surface. The density of states (DOS) and partial density of states (PDOS) of TiVCO2 and Ti2CO2 MXene indicated the transition of their conductive types from semiconductors to conductors. In addition, we observed that TiVCO2 has higher electrical conductivity and ion transport speed than the original Ti2CO2 MXene, and at the same time, Li atoms can be adsorbed well on the surface of MXene and show a lower diffusion energy barrier. Therefore, TiVCO2 is expected to become the anode material for the next generation of lithium-ion batteries and has good lithium storage performance.

3.
Cancer Cell ; 42(6): 968-984.e9, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788719

RESUMO

Glioblastomas (GBM) are incurable central nervous system (CNS) cancers characterized by substantial myeloid cell infiltration. Whether myeloid cell-directed therapeutic targets identified in peripheral non-CNS cancers are applicable to GBM requires further study. Here, we identify that the critical immunosuppressive target in peripheral cancers, triggering receptor expressed on myeloid cells-2 (TREM2), is immunoprotective in GBM. Genetic or pharmacological TREM2 deficiency promotes GBM progression in vivo. Single-cell and spatial sequencing reveals downregulated TREM2 in GBM-infiltrated myeloid cells. TREM2 negatively correlates with immunosuppressive myeloid and T cell exhaustion signatures in GBM. We further demonstrate that during GBM progression, CNS-enriched sphingolipids bind TREM2 on myeloid cells and elicit antitumor responses. Clinically, high TREM2 expression in myeloid cells correlates with better survival in GBM. Adeno-associated virus-mediated TREM2 overexpression impedes GBM progression and synergizes with anti-PD-1 therapy. Our results reveal distinct functions of TREM2 in CNS cancers and support organ-specific myeloid cell remodeling in cancer immunotherapy.


Assuntos
Glioblastoma , Glicoproteínas de Membrana , Receptores Imunológicos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Humanos , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/metabolismo , Células Mieloides/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
4.
Curr Biol ; 34(12): 2594-2605.e7, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38781957

RESUMO

The western Tibetan Plateau is the crossroad between the Tibetan Plateau, Central Asia, and South Asia, and it is a potential human migration pathway connecting these regions. However, the population history of the western Tibetan Plateau remains largely unexplored due to the lack of ancient genomes covering a long-time interval from this area. Here, we reported genome-wide data of 65 individuals dated to 3,500-300 years before present (BP) in the Ngari prefecture. The ancient western Tibetan Plateau populations share the majority of their genetic components with the southern Tibetan Plateau populations and have maintained genetic continuity since 3,500 BP while maintaining interactions with populations within and outside the Tibetan Plateau. Within the Tibetan Plateau, the ancient western Tibetan Plateau populations were influenced by the additional expansion from the south to the southwest plateau before 1,800 BP. Outside the Tibetan Plateau, the western Tibetan Plateau populations interacted with both South and Central Asian populations at least 2,000 years ago, and the South Asian-related genetic influence, despite being very limited, was from the Indus Valley Civilization (IVC) migrants in Central Asia instead of the IVC populations from the Indus Valley. In light of the new genetic data, our study revealed the complex population interconnections across and within the Tibetan Plateau.


Assuntos
DNA Antigo , Genoma Humano , Migração Humana , Humanos , DNA Antigo/análise , População do Leste Asiático/genética , Genética Populacional , Migração Humana/história , Tibet
5.
Heliyon ; 10(9): e30458, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720732

RESUMO

Adsorption-desorption experiments of three heavy metal ions (i.e., lead, copper, cadmium) in silty soil were carried out at different temperatures, and the microscopic characteristics of silty soil loaded with the three heavy metal ions were analyzed. A one-dimensional soil column was used to discuss the influences of heavy metal ion types and concentrations on the soil moisture distribution and the migration level of different heavy metal ions, especially during the dynamic change process from an unsaturated state to a saturated state. Studies show that the adsorption of heavy metal ions onto silty soil is closely related to the mineral composition and functional groups in silty soil. In addition to physical adsorption, the adsorption of heavy metal ions is closely related to the hydrolysis reaction of mineral components such as kaolinite, calcite, dolomite, plagioclase and quartz. Under constant temperature, the types and concentrations of heavy metal ions play an important role in the moisture migration of unsaturated soil. In the presence of heavy metal ions, the penetration of lead ions is the greatest, followed by copper ions and then cadmium ions. The greater the ion concentration is, the stronger the penetration of heavy metal ions in silty soils.

6.
Front Neurosci ; 18: 1362239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699678

RESUMO

Introduction: Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging. Methods: In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting. Results: Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain. Discussion: Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.

7.
Nature ; 629(8010): 193-200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600383

RESUMO

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1-7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases.


Assuntos
Androgênios , Células , Caracteres Sexuais , Análise de Célula Única , Transcriptoma , Animais , Feminino , Humanos , Masculino , Camundongos , Androgênios/metabolismo , Androgênios/farmacologia , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/genética , Imunidade Inata , Linfócitos/metabolismo , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Biobanco do Reino Unido , Células/efeitos dos fármacos , Células/imunologia , Células/metabolismo
8.
Adv Sci (Weinh) ; 11(22): e2310005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572525

RESUMO

Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.

9.
Angew Chem Int Ed Engl ; 63(27): e202404637, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644436

RESUMO

Application of silicon-based anodes is significantly challenged by low initial Coulombic efficiency (ICE) and poor cyclability. Traditional pre-lithiation reagents often pose safety concerns due to their unstable chemical nature. Achieving a balance between water-stability and high ICE in prelithiated silicon is a critical issue. Here, we present a lithium-enriched silicon/graphite material with an ultra-high ICE of ≥110 % through a high-stable lithium pre-storage methodology. Lithium pre-storage prepared a nano-drilled graphite material with surficial lithium functional groups, which can form chemical bonds with adjacent silicon during high-temperature sintering. This results in an unexpected O-Li-Si interaction, leading to in situ pre-lithiation of silicon nanoparticles and providing high stability in air and water. Additionally, the lithium-enriched silicon/graphite materials impart a combination of high ICE, high specific capacity (620 mAh g-1), and long cycling stability (>400 cycles). This study opens up a promising avenue for highly air- and water-stable silicon anode prelithiation methods.

10.
Food Chem X ; 22: 101391, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681231

RESUMO

Sensory analysis and untargeted lipidomics were employed to study the impact of phospholipase B (PLB) on lipid oxidation and flavor in steamed sturgeon meat, revealing the inherent relationship between lipid oxidation and flavor regulation. The research verified that PLB effectively suppresses fat oxidation and improves the overall taste of steamed sturgeon meat. Furthermore, the PLB group identified 52 compounds, and the content of odor substances such as isoamyl alcohol and hexanal was reduced compared with other groups. Finally, lipid substances containing eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were screened out from 32 kinds of differential phospholipids. Through Pearson correlation analysis, it was observed that certain differential phospholipids such as PC (22:6) and PC (22:5) exhibited varying correlations with odor substances like hexanal and isovaleraldehyde. These findings suggest that PLB specifically affects certain phospholipids, leading to the production of distinct volatile substances through oxidative degradation.

11.
Nat Cancer ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609488

RESUMO

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

12.
Heliyon ; 10(7): e28769, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590908

RESUMO

Objective: To investigate the effectiveness of a multimodal deep learning model in predicting tumor budding (TB) grading in rectal cancer (RC) patients. Materials and methods: A retrospective analysis was conducted on 355 patients with rectal adenocarcinoma from two different hospitals. Among them, 289 patients from our institution were randomly divided into an internal training cohort (n = 202) and an internal validation cohort (n = 87) in a 7:3 ratio, while an additional 66 patients from another hospital constituted an external validation cohort. Various deep learning models were constructed and compared for their performance using T1CE and CT-enhanced images, and the optimal models were selected for the creation of a multimodal fusion model. Based on single and multiple factor logistic regression, clinical N staging and fecal occult blood were identified as independent risk factors and used to construct the clinical model. A decision-level fusion was employed to integrate these two models to create an ensemble model. The predictive performance of each model was evaluated using the area under the curve (AUC), DeLong's test, calibration curve, and decision curve analysis (DCA). Model visualization Gradient-weighted Class Activation Mapping (Grad-CAM) was performed for model interpretation. Results: The multimodal fusion model demonstrated superior performance compared to single-modal models, with AUC values of 0.869 (95% CI: 0.761-0.976) for the internal validation cohort and 0.848 (95% CI: 0.721-0.975) for the external validation cohort. N-stage and fecal occult blood were identified as clinically independent risk factors through single and multivariable logistic regression analysis. The final ensemble model exhibited the best performance, with AUC values of 0.898 (95% CI: 0.820-0.975) for the internal validation cohort and 0.868 (95% CI: 0.768-0.968) for the external validation cohort. Conclusion: Multimodal deep learning models can effectively and non-invasively provide individualized predictions for TB grading in RC patients, offering valuable guidance for treatment selection and prognosis assessment.

13.
Front Cell Neurosci ; 18: 1352630, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572075

RESUMO

Introduction: Spinal cord injury (SCI) is a severely disabling disease. Hyperactivation of neuroinflammation is one of the main pathophysiological features of secondary SCI, with phospholipid metabolism playing an important role in regulating inflammation. Phospholipase D (PLD), a critical lipid-signaling molecule, is known to be involved in various physiological processes, including the regulation of inflammation. Despite this knowledge, the specific role of PLD in SCI remains unclear. Methods: In this study, we constructed mouse models of SCI and administered PLD inhibitor (FIPI) treatment to investigate the efficacy of PLD. Additionally, transcriptome sequencing and protein microarray analysis of spinal cord tissues were conducted to further elucidate its mechanism of action. Results: The results showed that PLD expression increased after SCI, and inhibition of PLD significantly improved the locomotor ability, reduced glial scarring, and decreased the damage of spinal cord tissues in mice with SCI. Transcriptome sequencing analysis showed that inhibition of PLD altered gene expression in inflammation regulation. Subsequently, the protein microarray analysis of spinal cord tissues revealed variations in numerous inflammatory factors. Biosignature analysis pointed to an association with immunity, thus confirming the results obtained from transcriptome sequencing. Discussion: Collectively, these observations furnish compelling evidence supporting the anti-inflammatory effect of FIPI in the context of SCI, while also offering important insights into the PLD function which may be a potential therapeutic target for SCI.

14.
Head Neck ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671587

RESUMO

BACKGROUND: This study evaluated health-related quality of life (HRQoL) in the RATIONALE-309 (NCT03924986) intent-to-treat (ITT) population and in a subgroup of patients with liver metastases. METHODS: Patients were randomized 1:1 to tislelizumab + chemotherapy or placebo + chemotherapy. As the secondary endpoint, HRQoL was evaluated using seven selected scores from the EORTC QLQ-C30 and QLQ Head and Neck Cancer module (QLQ-H&N35). RESULTS: Of 263 randomized patients in the ITT population (tislelizumab + chemotherapy n = 131, placebo + chemotherapy n = 132), 43% had liver metastases (tislelizumab + chemotherapy n = 56; placebo + chemotherapy n = 57). No differences in change in selected scores on the QLQ-C30 from baseline to cycle 4 or cycle 8 were observed for the ITT or liver metastases subgroup. No differences in selected QLQ-H&N35 scores were observed between the arms from baseline to cycle 4. In the ITT population and the liver metastases subgroup, a greater reduction from baseline to cycle 8 was observed in the tislelizumab + chemotherapy arm than the placebo + chemotherapy arm in QLQ-H&N35 pain score. At cycle 8 in the liver metastases subgroup, the tislelizumab + chemotherapy arm experienced greater improvement in the QLQ-H&N35 senses problems score than the placebo + chemotherapy arm. Differences in time to deterioration between arms were not observed. CONCLUSIONS: The current findings, along with improved survival and favorable safety, suggests that tislelizumab + chemotherapy represents a potential first-line treatment for recurrent or metastatic nasopharyngeal cancer.

15.
J Agric Food Chem ; 72(17): 10076-10088, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629202

RESUMO

This study aimed to explore antioxidant peptides derived from sturgeon (Acipenser schrenckii) ovaries that exhibit antiosteoporotic effects in oxidative-induced MC3T3-E1 cells. The F3-15 component obtained from sturgeon ovarian protein hydrolysates (SOPHs) via gel filtration and RP-HPLC significantly increased the cell survival rate (from 49.38 ± 2.88 to 76.26 ± 2.09%). Two putative antioxidant-acting peptides, FDWDRL (FL6) and FEGPPFKF (FF8), were screened from the F3-15 faction via liquid chromatography-tandem mass spectrometry (LC-MS/MS) and through prediction by computer simulations. Molecular docking results indicated that the possible antioxidant mechanisms of FL6 and FF8 involved blocking the active site of human myeloperoxidase (hMPO). The in vitro tests showed that FL6 and FF8 were equally adept at reducing intracellular ROS levels, increasing the activity of antioxidant enzymes, and protecting cells from oxidative injuries by inhibiting the mitogen-activated protein kinase (MAPK) pathway and activating the phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3ß (GSK-3ß) signaling pathway. Moreover, both peptides could increase differentiation and mineralization abilities in oxidatively damaged MC3T3-E1 cells. Furthermore, FF8 exhibited high resistance to pepsin and trypsin, showcasing potential for practical applications.


Assuntos
Proteínas de Peixes , Peixes , Osteoblastos , Ovário , Estresse Oxidativo , Peptídeos , Hidrolisados de Proteína , Animais , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Feminino , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Proteínas de Peixes/química , Proteínas de Peixes/farmacologia , Proteínas de Peixes/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Espectrometria de Massas em Tandem
16.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530274

RESUMO

To meet the demand for the accurate measurements of the dynamic pressure of a shock wave, a composite dynamic pressure sensor design method is proposed based on the formation mechanism, propagation characteristics, special testing environment of the dynamic pressure, and Pitot tube structure. The dynamic pressure of the shock wave is evaluated by the total pressure and static pressure units installed in the composite sensor. FLUENT simulation software was used to analyze the aerodynamic characteristics of the dynamic pressure sensor, and parameters such as the structural size and inlet position of the sensor were determined. In response to the special experimental environment of the shock wave, the requirements for the dynamic pressure measurements under damage conditions were analyzed, and a dynamic pressure testing system was established. Dynamic pressure tests with four 2,4,6-trinitrotoluene [C7H5(NO2)3] equivalents of 1, 2, 15, and 20 kg were carried out. The experimental results show that the proposed sensor design method can accurately and effectively measure the dynamic pressure signal, and the dynamic pressure gain multiple decreases with an increase in the proportional distance. This provides an effective testing method for evaluating the dynamic pressure damage effect of ammunition systems.

17.
Nat Commun ; 15(1): 1087, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316790

RESUMO

Aneuploidy, a deviation of the chromosome number from euploidy, is one of the hallmarks of cancer. High levels of aneuploidy are generally correlated with metastasis and poor prognosis in cancer patients. However, the causality of aneuploidy in cancer metastasis remains to be explored. Here we demonstrate that teratomas derived from aneuploid murine embryonic stem cells (ESCs), but not from isogenic diploid ESCs, disseminated to multiple organs, for which no additional copy number variations were required. Notably, no cancer driver gene mutations were identified in any metastases. Aneuploid circulating teratoma cells were successfully isolated from peripheral blood and showed high capacities for migration and organ colonization. Single-cell RNA sequencing of aneuploid primary teratomas and metastases identified a unique cell population with high stemness that was absent in diploid ESCs-derived teratomas. Further investigation revealed that aneuploid cells displayed decreased proteasome activity and overactivated endoplasmic reticulum (ER) stress during differentiation, thereby restricting the degradation of proteins produced from extra chromosomes in the ESC state and causing differentiation deficiencies. Noticeably, both proteasome activator Oleuropein and ER stress inhibitor 4-PBA can effectively inhibit aneuploid teratoma metastasis.


Assuntos
Variações do Número de Cópias de DNA , Teratoma , Humanos , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma , Aneuploidia , Células-Tronco Embrionárias , Teratoma/genética , Teratoma/patologia
18.
J Sci Food Agric ; 104(9): 5244-5251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308527

RESUMO

BACKGROUND: Sturgeon is a popular aquaculture species in many countries. Its swim bladder is rich in collagen but has not yet been exploited scientifically. RESULTS: Collagen peptides (CPs) prepared from sturgeon swim bladder by trypsinolysis had an average molecular weight of 528.5 Da and consisted of 407 peptides, 16.1% of the content of which was GFPGADGSAGPK. The CPs at 25 mg mL-1 extended the lifespan of Caenorhabditis elegans by 22.6%, which was significantly higher than the extension achieved by other hydrolysis methods and source materials. They also improved fitness-related traits (body size, motor capacity, oxidative stress, cell apoptosis, and epidermal barrier function), indicating prolonged healthspan. Transcriptome analysis showed that the effect was mediated by the mitogen-activated protein kinase pathway, which enhanced stress resistance, the insulin/IGF-1 pathway, which inhibited protein aggregation, and the NHR-80/FAT-6 pathway, which regulated lipid metabolism. CONCLUSION: Collagen peptides from sturgeon swim bladder by trypsinolysis prolonged the lifespan and healthspan in C. elegans, and might be promising anti-aging agents. © 2024 Society of Chemical Industry.


Assuntos
Sacos Aéreos , Caenorhabditis elegans , Colágeno , Peixes , Longevidade , Peptídeos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Longevidade/efeitos dos fármacos , Colágeno/metabolismo , Sacos Aéreos/química , Sacos Aéreos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peixes/genética , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/química
19.
Synth Syst Biotechnol ; 9(2): 234-241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385152

RESUMO

Precisely controlling gene expression is beneficial for optimizing biosynthetic pathways for improving the production. However, promoters in nonconventional yeasts such as Ogataea polymorpha are always limited, which results in incompatible gene modulation. Here, we expanded the promoter library in O. polymorpha based on transcriptional data, among which 13 constitutive promoters had the strengths ranging from 0-55% of PGAP, the commonly used strong constitutive promoter, and 2 were growth phase-dependent promoters. Subsequently, 2 hybrid growth phase-dependent promoters were constructed and characterized, which had 2-fold higher activities. Finally, promoter engineering was applied to precisely regulate cellular metabolism for efficient production of ß-elemene. The glyceraldehyde-3-phosphate dehydrogenase gene GAP was downregulated to drive more flux into pentose phosphate pathway (PPP) and then to enhance the supply of acetyl-CoA by using phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Coupled with the phase-dependent expression of synthase module (ERG20∼LsLTC2 fusion), the highest titer of 5.24 g/L with a yield of 0.037 g/(g glucose) was achieved in strain YY150U under fed-batch fermentation in shake flasks. This work characterized and engineered a series of promoters, that can be used to fine-tune genes for constructing efficient yeast cell factories.

20.
Curr Issues Mol Biol ; 46(2): 1291-1307, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392200

RESUMO

Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered: (1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6-8 weeks were intraperitoneally administered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leukocytes, leading to reduced levels of inflammatory factors such as IL-1ß, TNF-α, and IL-22 in the injured area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis, anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI, thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA