Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Food Res Int ; 170: 113024, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316087

RESUMO

The viable but nonculturable (VBNC) state is adopted by many foodborne pathogenic bacteria to survive in adverse conditions. This study found that lactic acid, a widely used food preservative, can induce Yersinia enterocolitica to enter a VBNC state. Y. enterocolitica treated with 2 mg/mL lactic acid completely lost culturability within 20 min, and 10.137 ± 1.693 % of the cells entered a VBNC state. VBNC state cells could be recovered (resuscitated) in tryptic soy broth (TSB), 5 % (v/v) Tween80-TSB, and 2 mg/mL sodium pyruvate-TSB. In the VBNC state of Y. enterocolitica induced by lactic acid, the intracellular adenosine triphosphate (ATP) concentration and various enzyme activities were decreased, and the reactive oxygen species (ROS) level was elevated, compared with uninduced cells. The VBNC state cells were significantly more resistant to heat and simulated gastric fluid than uninduced cells, but their ability to survive in a high-osmotic-pressure environment was significantly less than that of uninduced cells. The VBNC state cells induced by lactic acid changed from long rod-like to short rod-like, with small vacuoles at the cell edges; the genetic material was loosened and the density of cytoplasm was increased. The VBNC state cells had decreased ability to adhere to and invade Caco-2 (human colorectal adenocarcinoma) cells. The transcription levels of genes related to adhesion, invasion, motility, and resistance to adverse environmental stress were downregulated in VBNC state cells relative to uninduced cells. In meat-based broth, all nine tested strains of Y. enterocolitica entered the VBNC state after lactic acid treatment; among these strains, only VBNC state cells of Y. enterocolitica CMCC 52207 and Isolate 36 could not be recovered. Therefore, this study is a wake-up call for food safety problems caused by VBNC state pathogens induced by lactic acid.


Assuntos
Adenocarcinoma , Yersinia enterocolitica , Humanos , Células CACO-2 , Cafeína , Ácido Láctico
2.
Foodborne Pathog Dis ; 20(4): 138-148, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37010405

RESUMO

Shigella sonnei, the causative agents of bacillary dysentery, remains a significant threat to public health. Litsea cubeba essential oil (LC-EO), one of the natural essential oils, exhibited promising biological activities. In this study, the antibacterial effects and possible mechanisms of LC-EO on S. sonnei and its application in lettuce medium were investigated. The minimum inhibitory concentration (MIC) of LC-EO against S. sonnei ATCC 25931 and CMCC 51592 was 4 and 6 µL/mL, respectively. The LC-EO could inhibit the growth of S. sonnei, and decreased S. sonnei to undetectable levels with 4 µL/mL for 1 h in Luria-Bertani broth. The antibacterial mechanism indicated that after the treatment of LC-EO, the production of reactive oxygen species and the activity of superoxide dismutase were significantly elevated in S. sonnei cells, and eventually led to the lipid oxidation product, the malondialdehyde content that significantly increased. Moreover, LC-EO at 2 MIC could destroy 96.51% of bacterial cell membrane integrity, and made S. sonnei cells to appear wrinkled with a rough surface, so that the intracellular adenosine triphosphate leakage was about 0.352-0.030 µmol/L. Finally, the results of application evaluation indicated that the addition of LC-EO at 4 µL/mL in lettuce leaves and 6 µL/mL in lettuce juice could decrease the number of S. sonnei to undetectable levels without remarkable influence on the lettuce leaf sensory quality. In summary, LC-EO exerted strong antibacterial activity and has the potential to control S. sonnei in food industry.


Assuntos
Litsea , Óleos Voláteis , Óleos Voláteis/farmacologia , Lactuca , Shigella sonnei , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
3.
Food Microbiol ; 112: 104241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906323

RESUMO

Viable but nonculturable (VBNC) state bacteria are difficult to detect in the food industry due to their nonculturable nature and their recovery characteristics pose a potential threat to human health. The results of this study indicated that S. aureus was found to enter the VBNC state completely after induced by citral (1 and 2 mg/mL) for 2 h, and after induced by trans-cinnamaldehyde (0.5 and 1 mg/mL) for 1 h and 3 h, respectively. Except for VBNC state cells induced by 2 mg/mL citral, the VBNC state cells induced by the other three conditions (1 mg/mL citral, 0.5 and 1 mg/mL trans-cinnamaldehyde) were able to be resuscitated in TSB media. In the VBNC state cells induced by citral and trans-cinnamaldehyde, the ATP concentration was reduced, the hemolysin-producing ability was significantly decreased, but the intracellular ROS level was elevated. The results of heat and simulated gastric fluid experiments showed different environment resistance on VBNC state cells induced by citral and trans-cinnamaldehyde. In addition, by observing the VBNC state cells showed that irregular folds on the surface, increased electron density inside and vacuoles in the nuclear region. What's more, S. aureus was found to enter the VBNC state completely after induced by meat-based broth containing citral (1 and 2 mg/mL) for 7 h and 5 h, after induced by meat-based broth containing trans-cinnamaldehyde (0.5 and 1 mg/mL) for 8 h and 7 h. In summary, citral and trans-cinnamaldehyde can induce S. aureus into VBNC state and food industry needs to comprehensively evaluate the antibacterial capacity of these two plant-derived antimicrobial agents.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Humanos , Monoterpenos Acíclicos
4.
Foodborne Pathog Dis ; 20(2): 47-58, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36779942

RESUMO

Pseudomonas aeruginosa biofilm formation has been considered to be an important determinant of its pathogenicity in most infections. The antibiofilm activity of trans-cinnamaldehyde (TC) against P. aeruginosa was investigated in this study. Results demonstrated that the minimum inhibitory concentration (MIC) of TC against P. aeruginosa was 0.8 mg/mL, and subinhibitory concentrations (SICs) was 0.2 mg/mL and below. Crystal violet staining showed that TC at 0.05-0.2 mg/mL reduced biofilm biomass in 48 h in a concentration-dependent mode. The formation area of TC-treated biofilms was significantly declined (p < 0.01) on the glass slides observed by light microscopy. Field-emission scanning electron microscopy further demonstrated that TC destroyed the biofilm morphology and structure. Confocal laser scanning microscopic observed the dispersion of biofilms and the reduction of exopolysaccharides after TC treatment stained with concanavalin A (Con-A)-fluorescein isothiocyanate conjugate and Hoechst 33258. Meanwhile, TC caused a significant decrease (p < 0.01) in the component of polysaccharides, proteins, and DNA in extracellular polymeric substance. The swimming and swarming motility and quorum sensing of P. aeruginosa was also found to be significantly inhibited (p < 0.01) by TC at SICs. Furthermore, SICs of TC repressed the several genes transcription associated with biofilm formation as determined by real-time quantitative polymerase chain reaction. Overall, our findings suggest that TC could be applied as natural and safe antibiofilm agent to inhibit the biofilm formation of P. aeruginosa.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Matriz Extracelular de Substâncias Poliméricas , Biofilmes , Percepção de Quorum/genética
5.
Foods ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36496708

RESUMO

Litsea cubeba essential oil (LC-EO) has anti-insecticidal, antioxidant, and anticancer proper-ties; however, its antimicrobial activity toward Cronobacter sakazakii has not yet been researched extensively. The objective of this study was to investigate the antimicrobial and antibiofilm effects of LC-EO toward C. sakazakii, along with the underlying mechanisms. The minimum inhibitory concentrations of LC-EO toward eight different C. sakazakii strains ranged from 1.5 to 4.0 µL/mL, and LC-EO exposure showed a longer lag phase and lower specific growth compared to untreated bacteria. LC-EO increased reactive oxygen species production, decreased the integrity of the cell membrane, caused cell membrane depolarization, and decreased the ATP concentration in the cell, showing that LC-EO caused cellular damage associated with membrane permeability. LC-EO induced morphological changes in the cells. LC-EO inhibited C. sakazakii in reconstituted infant milk formula at 50 °C, and showed effective inactivation of C. sakazakii biofilms on stainless steel surfaces. Confocal laser scanning and attenuated total reflection-Fourier-transform infrared spectrometry indicated that the biofilms were disrupted by LC-EO. These findings suggest a potential for applying LC-EO in the prevention and control of C. sakazakii in the dairy industry as a natural antimicrobial and antibiofilm agent.

6.
Foodborne Pathog Dis ; 19(11): 779-786, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367551

RESUMO

Shigella sonnei is a species of Shigella, and the infection rate of S. sonnei is increasing year by year. Eugenol is an active ingredient in clove essential oil and is a generally recognized as safe (GRAS)-certified food ingredient. The mechanism of inhibition of S. sonnei by eugenol has been investigated in this study. The minimum inhibitory concentration of eugenol against both S. sonnei ATCC 25931 and S. sonnei CMCC 51592 was 0.5 mg/mL and minimum bactericidal concentration (MBC) for both strains was 0.8 mg/mL. The inhibition effect of eugenol against S. sonnei was due to increased levels of reactive oxygen species in cells, changed cell membrane permeability, and induced cell membrane dysfunction, for instance, cell membrane hyperpolarization and intracellular ATP concentration drops. The results of confocal laser scanning microscope and field emission scanning electron microscopy showed that eugenol leads to decreased cell membrane integrity, resulting in changed cell morphology. Moreover, eugenol inactivated S. sonnei in Luria-Bertani (LB) broth and lettuce juice. These results indicated that eugenol could inactivate S. sonnei and has the potential to control S. sonnei in the food industry.


Assuntos
Disenteria Bacilar , Shigella sonnei , Eugenol/farmacologia , Lactuca/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
7.
Foods ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36076751

RESUMO

Shigella flexneri (Sh. flexneri), which can be found in food and the environment, is a widespread food-borne pathogen that causes human diarrhea termed "shigellosis". In this study, eugenol, a natural active substance, was investigated for its antibacterial activity against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of eugenol against Sh. flexneri ATCC 12022 was 0.5 and 0.8 mg/mL. The growth curves and inhibitory effect in LB broth, PBS, vegetable juice, and minced pork showed that eugenol had a good activity against Sh. flexneri. Research findings indicated the superoxide dismutase activity of Sh. flexneri was inhibited after eugenol treatment, resulting in concentrations of intracellular reactive oxygen species and an increase in malondialdehyde. The flow cytometry analysis and field emission scanning electron microscopy results revealed obvious damage to cell membrane integrity and changes in the morphology of Sh. flexneri. In addition, the intracellular ATP concentration leaked from 0.5 µM to below 0.05 µM and the membrane potential showed a concentration-dependent depolarization after eugenol treatment. In summary, eugenol exerted strong antibacterial activity and has the potential to control Sh. flexneri in the food industry.

8.
Adv Mater ; 34(39): e2109701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906820

RESUMO

Polymer self-assembly is a crucial process in materials engineering. Currently, almost all polymer self-assembly is limited to non-covalent bonding methods, even though these methods have drawbacks as they require complicated synthesis techniques and produce relatively unstable structures. Here, a novel mechanism of covalent polymer self-assembly is discovered and employed to address drawbacks of non-covalent polymer self-assembly. A simple ketone homopolymer is found to self-assemble into nano- to macroscale hydrogels during covalent crosslinking. In contrast to non-covalent self-assembly, the covalent self-assembly is independent of and unaffected by solvent conditions (e.g., polarity and ionic strength) and does not require additional agents, e.g., organic solvents and surfactants. The covalent polymer self-assembly is subjected to a new mechanism of control by tuning the covalent crosslinking rate. This leads to nanogels with an unprecedented and tightly controlled range of dimensions from less than 10 nm to above 100 nm. Moreover, the crosslinking rate also regulates the assembly behavior of microgels fabricated by microfluidics. The microgels self-assemble into granular fibers, which is 3D printed into stable porous scaffolds. The novel covalent polymer assembly method has enormous potential to revolutionize multiscale materials fabrication for applications in drug delivery, tissue engineering, and many other fields.

9.
Adv Sci (Weinh) ; 9(10): e2103745, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35072358

RESUMO

Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g-1 ) upon the first administration to 15% ID g-1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation.


Assuntos
Micelas , Nanopartículas , Humanos , Nanomedicina , Permeabilidade , Nanomedicina Teranóstica/métodos
11.
Biomaterials ; 266: 120432, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069116

RESUMO

Gastrointestinal (GI) cancers are among the most lethal malignancies. The treatment of advanced-stage GI cancer involves standard chemotherapeutic drugs, such as docetaxel, as well as targeted therapeutics and immunomodulatory agents, all of which are only moderately effective. We here show that Π electron-stabilized polymeric micelles based on PEG-b-p(HPMAm-Bz) can be loaded highly efficiently with docetaxel (loading capacity up to 23 wt%) and potentiate chemotherapy responses in multiple advanced-stage GI cancer mouse models. Complete cures and full tumor regression were achieved upon intravenously administering micellar docetaxel in subcutaneous gastric cancer cell line-derived xenografts (CDX), as well as in CDX models with intraperitoneal and lung metastases. Nanoformulated docetaxel also outperformed conventional docetaxel in a patient-derived xenograft (PDX) model, doubling the extent of tumor growth inhibition. Furthermore, micellar docetaxel modulated the tumor immune microenvironment in CDX and PDX tumors, increasing the ratio between M1-and M2-like macrophages, and toxicologically, it was found to be very well-tolerated. These findings demonstrate that Π electron-stabilized polymeric micelles loaded with docetaxel hold significant potential for the treatment of advanced-stage GI cancers.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Docetaxel , Portadores de Fármacos , Elétrons , Neoplasias Gastrointestinais/tratamento farmacológico , Camundongos , Micelas , Polietilenoglicóis , Microambiente Tumoral
12.
J Am Chem Soc ; 142(28): 12133-12139, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32524819

RESUMO

Synthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high in vitro TLR agonist activity. In a mouse model, locally administered vesicles provoke significantly more potent and long-lasting immune stimulation in terms of interferon expression at the injection site and in draining lymphoid tissue compared to a nonamphiphilic control and the native TLR agonist. Moreover, the vesicles induce robust activation of dendritic cells in the draining lymph node in vivo.


Assuntos
Imidazóis/farmacologia , Glicoproteínas de Membrana/agonistas , Pró-Fármacos/farmacologia , Quinolinas/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , beta-Galactosidase/imunologia , Animais , Imidazóis/química , Imidazóis/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Polietilenoglicóis/farmacologia , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Propriedades de Superfície , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , beta-Galactosidase/química , beta-Galactosidase/metabolismo
13.
Acta Pharmacol Sin ; 41(7): 954-958, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32555445

RESUMO

Cancer nanomedicines have shown promise in combination immunotherapy, thus far mostly preclinically but also already in clinical trials. Combining nanomedicines with immunotherapy aims to reinforce the cancer-immunity cycle, via potentiating key steps in the immune reaction cascade, namely antigen release, antigen processing, antigen presentation, and immune cell-mediated killing. Combination nano-immunotherapy can be realized via three targeting strategies, i.e., by targeting cancer cells, targeting the tumor immune microenvironment, and targeting the peripheral immune system. The clinical potential of nano-immunotherapy has recently been demonstrated in a phase III trial in which nano-albumin paclitaxel (Abraxane®) was combined with atezolizumab (Tecentriq®) for the treatment of patients suffering from advanced triple-negative breast cancer. In the present paper, besides strategies and initial (pre)clinical success stories, we also discuss several key challenges in nano-immunotherapy. Taken together, nanomedicines combined with immunotherapy are gaining significant attention, and it is anticipated that they will play an increasingly important role in clinical cancer therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Nanomedicina , Neoplasias/terapia , Humanos , Neoplasias/imunologia , Neoplasias/patologia
14.
Chem Commun (Camb) ; 56(12): 1899, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32016277

RESUMO

Correction for 'A facile strategy to realize a single/double photon excitation-dependent photosensitizer for imaging-guided phototherapy against HeLa cancer cells at separate irradiation channels' by Lin Kong et al., Chem. Commun., 2020, 56, 571-574.

15.
Chem Commun (Camb) ; 56(4): 571-574, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31829349

RESUMO

A novel difluoroboron fluorophore with an electron donor-acceptor conjugated structure was synthesized with 26.5% fluorescence quantum yield, 18 035 GM two-photon absorbing cross-section, and undetectable two-photon fluorescence, resulting in 25% 1O2 quantum yield. The unique optical behavior of CNFBBN enabled one-photon fluorescence imaging and two-photon phototherapy against HeLa cancer cells, irradiated at separate wavelengths.


Assuntos
Compostos de Boro/farmacologia , Corantes Fluorescentes/farmacologia , Imagem Óptica , Fótons , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Compostos de Boro/química , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Estrutura Molecular , Fármacos Fotossensibilizantes/química , Espectrometria de Fluorescência
16.
Oncol Lett ; 16(1): 793-800, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29963147

RESUMO

Despite an improvement in the efficacy of chemotherapeutic agents, the outcome of patients with prostate cancer remains poor. MicroRNA (miRNA/miR)-139 expression is often downregulated in multiple types of tumor, including in prostate cancer. The aim of the present study was to investigate the inhibitory effect of miR-139 on the PC-3, C4-2B and LNCaP prostate cancer cell lines. Analysis of the cell cycle of PC-3, C4-2B and LNCaP cells transfected with miR-139 revealed a significantly increased percentage of cells in the G1 phase and a decreased percentage in the S and G2 phases compared with those transfected with a negative control miRNA. The growth inhibitory rate of miR-139-transfected cells 24, 48 and 72 h after transfection were 32.83±2.61, 52.58±3.2 and 62.36±4.55% in PC-3 cells; 30.28±2.25, 51.74±3.27 and 60.80±3.58% in C4-2B cells; and 33.20±2.67, 51.83±3.59 and 61.79±4.85% in LNCaP cells, respectively. The present study revealed that miR-139 inhibited the proliferation of prostate cancer cells by interfering with the cell cycle. Further study into the mechanism by which this happened suggested that miR-139 reduced cyclin D1 expression and inhibited cell proliferation through targeting Notch1.

17.
J Cancer ; 8(18): 3868-3875, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29151975

RESUMO

Objective. To explore the influence of M2-polarized tumor-associated macrophages (TAMs) on high-risk human papillomavirus (hr-HPV)-related cervical carcinogenesis and metastasis. Methods. CD68+ and CD163+ macrophages were examined immunohistochemically in a series of 130 samples, including 26 cases of normal cervical tissues, 59 cases of cervical intraepithelial neoplasia (CIN), and 45 cases of squamous cell carcinoma (SCC), and the results were statistically analyzed. The macrophage count was corrected for the epithelial and stromal compartments respectively. Clinical data were also obtained. Results. High counts of CD68+ and CD163+ macrophages were associated with hr-HPV infection (both p < 0.05) and positively correlated with cervical carcinogenesis (Spearman's rho = 0.478, p = 0.000; Spearman's rho = 0.676, p =0.000, respectively). The immunostaining pattern of CD163 exhibited clearer background than that of CD68. CD163+ macrophages showed a more obviously increasing migration into the epithelium along with the progression of CIN to invasive cancer. Notably, a high index of CD163+ macrophages was significantly associated with higher FIGO stages (p = 0.009) and lymph node metastasis (p = 0.012), but a similar finding was not found for CD68+ macrophages (p = 0.067, p = 0.079, respectively). Conclusions. Our study supported a critical role of TAMs as a prospective predictor for hr-HPV-related cervical carcinogenesis. CD163, as a promising TAMs marker, is superior to CD68 for predicting the malignant transformation and metastatic potential of cervical cancer.

18.
FEBS J ; 284(18): 3000-3017, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28703907

RESUMO

Tumor metastasis remains a major obstacle for improving overall cancer survival in cervical cancer (CC), which may be due to the existence of tumor microenvironment-related cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT). The mechanism underlying these processes needs to be further elucidated. Here, we report that TGF-ß1, one of the key microenvironmental stimuli, can enhance CSC characteristics, facilitate the EMT, and induce CK17. Silencing CK17 expression attenuated CSC-like properties without affecting the EMT markers induced by TGF-ß1, whereas forced overexpression of CK17 promoted lymphatic metastasis in vivo even without EMT inducement. Inhibitors of ERK1/2 signaling drastically decreased the induction of CK17 mediated by TGF-ß1. By combined computational and experimental approaches, we identified and validated that MZF1 was a key transcription factor binding to the promoter of CK17. Taken together, these results demonstrate that CK17 induced by the TGF-ß1-ERK1/2-MZF1 signaling pathway facilitates metastasis by promoting the acquisition of CSC properties rather than by inducing the EMT process in CC, suggesting that this CK17-related signaling pathway might be a suitable target for the development of therapy for CC metastasis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Queratina-17/genética , Fatores de Transcrição Kruppel-Like/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fator de Crescimento Transformador beta1/genética , Neoplasias do Colo do Útero/genética , Adulto , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Células HEK293 , Humanos , Queratina-17/antagonistas & inibidores , Queratina-17/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Metástase Linfática , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
19.
Clin Genitourin Cancer ; 15(5): 570-576, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28648755

RESUMO

BACKGROUND: Recent studies have demonstrated that the expression of long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes cancer cell proliferation, invasion, and metastasis in many tumor types, but the association between bladder cancer and MALAT1 remains unknown. MATERIALS: The expression of MALAT1 was tested by in situ hybridization (ISH) in 120 bladder cancer specimens. The association between MALAT1 expression and clinicopathological features and prognosis of the patients with bladder cancer was analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the relationship between the expression of MALAT1 and progression and metastasis of bladder cancer. RESULTS: ISH showed that high MALAT1 expression was associated with advanced histological grade, high tumor stage, and positive lymph nodes. Kaplan-Meier survival analysis and Cox regression analysis indicated that high tumor stage, positive lymph nodes, and high MALAT1 expression were independent prognostic indicators for overall survival (OS) of patients with bladder cancer. qRT-PCR showed that the expression of MALAT1 in bladder cancer tissues was 2.85 times higher than those measured in adjacent normal tissues (P < .001). The expression of MALAT1 was 2.673 ± 0.254 in non-muscle-invasive bladder cancer and 2.987 ± 0.381 in muscle-invasive bladder cancer (P = .018). In bladder cancer specimens with positive lymph nodes, MALAT1 expression was 3.167 ± 0.297 versus 2.896 ± 0.329 in bladder cancer specimens with negative lymph nodes (P = .020). CONCLUSION: High MALAT1 expression could serve as an independent prognostic factor for OS of patients with bladder cancer and could be considered as a potential therapeutic target of bladder cancer.


Assuntos
RNA Longo não Codificante/genética , Regulação para Cima , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Adulto , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida
20.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 5): o345-6, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25995940

RESUMO

The asymmetric unit of the title compound, C23H23N3, consists of two mol-ecules, A and B, with different conformations. In mol-ecule A, the dihedral angle between the carbazole ring system (r.m.s. deviation = 0.028 Å) and the pyridine ring is 20.28 (9)° and the N-C-C-C torsion angle of the butyl side chain is -63.4 (3)°. The equivalent data for mol-ecule B are 0.065 Å, 48.28 (11)° and 61.0 (3)°, respectively. In the crystal, the components are connected by weak N-H⋯N hydrogen bonds, generating [030] C(14) chains of alternating A and B mol-ecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA