Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(22): 5310-5319, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38806061

RESUMO

Every residue on a protein can be characterized by its interaction with water, in lack or in excess, as water is the matrix of biological systems. Infrared spectroscopy and the implementation of local azidohomoalanine (AHA) probes allow us to move beyond an ensemble or surface-driven conceptualization of water behavior and toward a granular, site-specific picture. In this paper, we examined the role of crowding in modulating both global and local behavior on the ß-hairpin, TrpZip2 using a combination of Fourier-transform infrared spectroscopy (FTIR) spectroscopy, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics simulations. We found that, at the amino acid level, crowding drove dehydration of both sheet and turn peptide sites as well as free AHA. However, the subpicosecond dynamics showed highly individualized responses based on the local environment. Interestingly, while steady-state FTIR measurements revealed similar responses at the amino-acid level to hard versus soft crowding (dehydration), we found that PEG and glucose had opposite stabilizing and destabilizing effects on the protein secondary structure, emphasizing an important distinction in understanding the impact of crowding on protein structure as well as the role of crowding across length scales.


Assuntos
Alanina , Simulação de Dinâmica Molecular , Água , Alanina/química , Alanina/análogos & derivados , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estrutura Secundária de Proteína , Glucose/química
2.
ACS Chem Biol ; 19(5): 1056-1065, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38620063

RESUMO

Lanmodulins are small, ∼110-residue proteins with four EF-hand motifs that demonstrate a picomolar affinity for lanthanide ions, making them efficient in the recovery and separation of these technologically important metals. In this study, we examine the thermodynamic and structural complexities of lanthanide ion binding to a 41-residue domain, EF 2-3, that constitutes the two highest-affinity metal-binding sites in the lanmodulin protein from Methylorubrum extorquens. Using a combination of circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we characterize the metal binding capabilities of EF 2-3. ITC demonstrates that binding occurs between peptide and lanthanides with conditional dissociation constants (Kd) in the range 20-30 µM, with no significant differences in the Kd values for La3+, Eu3+, and Tb3+ at pH 7.4. In addition, CD spectroscopy suggests that only one binding site of EF 2-3 undergoes a significant conformational change in the presence of lanthanides. 2D IR spectroscopy demonstrates the presence of both mono- and bidentate binding configurations in EF 2-3 with all three lanthanides. MD simulations, supported by Eu3+ luminescence measurements, explore these results, suggesting a competition between water-lanthanide and carboxylate-lanthanide interactions in the EF 2-3 domain. These results underscore the role of the core helical bundle of the protein architecture in influencing binding affinities and communication between the metal-binding sites in the full-length protein.


Assuntos
Elementos da Série dos Lantanídeos , Simulação de Dinâmica Molecular , Espectrofotometria Infravermelho , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/metabolismo , Termodinâmica , Sítios de Ligação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Dicroísmo Circular , Ligação Proteica , Metaloproteínas
3.
J Phys Chem Lett ; 15(16): 4391-4399, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621259

RESUMO

Water often serves as both a reactant and solvent in electrocatalytic reactions. Interfacial water networks can affect the transport and kinetics of these reactions, e.g., hydrogen evolution reaction and CO2 reduction reaction. Adding cosolvents that influence the hydrogen-bonding (H-bonding) environment, such as dimethyl sulfoxide (DMSO), has the potential to tune the reactivity of these important electrocatalytic reactions by regulating the interfacial local environment and water network. We investigate interfacial H-bonding networks in water-DMSO cosolvent mixtures on gold surfaces by using surface-enhanced infrared absorption spectroscopy and molecular dynamics simulations. Experiments and simulations show that the gold surface is enriched with dehydrated DMSO molecules and the mixture phase-separates to form water clusters. Simulations show a "buckled" water conformation at the surface, further constraining interfacial H-bonding. The small size of these water clusters and the energetically unfavorable H-bond conformations might inhibit H-bonding with bulk water, suppressing the proton diffusion required for efficient hydrogen evolution reaction processes.

4.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38488086

RESUMO

Thiocyanates, nitriles, and azides represent a versatile set of vibrational probes to measure the structure and dynamics in biological systems. The probes are minimally perturbative, the nitrile stretching mode appears in an otherwise uncongested spectral region, and the spectra report on the local environment around the probe. Nitrile frequencies and lineshapes, however, are difficult to interpret, and theoretical models that connect local environments with vibrational frequencies are often necessary. However, the development of both more accurate and intuitive models remains a challenge for the community. The present work provides an experimentally consistent collection of experimental measurements, including IR absorption and ultrafast two-dimensional infrared (2D IR) spectra, to serve as a benchmark in the development of future models. Specifically, we catalog spectra of the nitrile stretching mode of methyl thiocyanate (MeSCN) in fourteen different solvents, including non-polar, polar, and protic solvents. Absorption spectra indicate that π-interactions may be responsible for the line shape differences observed between aromatic and aliphatic alcohols. We also demonstrate that a recent Kamlet-Taft formulation describes the center frequency MeSCN. Furthermore, we report cryogenic infrared spectra that may lead to insights into the peak asymmetry in aprotic solvents. 2D IR spectra measured in protic solvents serve to connect hydrogen bonding with static inhomogeneity. We expect that these insights, along with the publicly available dataset, will be useful to continue advancing future models capable of quantitatively describing the relation between local environments, line shapes, and dynamics in nitrile probes.

5.
Annu Rev Phys Chem ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38382566

RESUMO

Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

7.
J Am Chem Soc ; 145(50): 27800-27809, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061016

RESUMO

Cells achieve high spatiotemporal control over biochemical processes through compartmentalization to membrane-bound as well as membraneless organelles that assemble by liquid-liquid phase separation. Characterizing the balance of forces within these environments is essential to understanding their stability and function, and water is an integral part of the condensate, playing an important role in mediating electrostatic and hydrogen-bonding interactions. Here, we investigate the ultrafast, picosecond hydrogen-bond dynamics of a model biocondensate consisting of a peptide poly-l-arginine (Poly-R) and the nucleic acid adenosine monophosphate (AMP) using coherent two-dimensional infrared (2D IR) spectroscopy. We investigated three vibrational modes: the arginine side-chain C═N stretches, an AMP ring mode, and the amide backbone carbonyl stretching modes. Dynamics slow considerably between the dilute phase and the condensate phase for each vibrational probe. For example, the arginine side-chain C═N modes slow from 0.38 to 2.26 ps due to strong electrostatic interactions. All-atom molecular dynamics simulations provide an atomistic interpretation of the H-bond network disruption resulting from electrostatic contributions as well as collapse within the condensate. Simulations predict that a fraction of water molecules are highly constrained within the condensate, explaining the observed slowdown in the H-bond dynamics.

8.
Biophys J ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38142298

RESUMO

Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.

9.
J Phys Chem A ; 127(46): 9853-9862, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942956

RESUMO

Coherent multidimensional spectroscopy provides experimental access to molecular structure and subpicosecond dynamics in solution. Dynamics are typically inferred from the evolution of lineshapes over a function of waiting time. Numerous spectral analysis methods, such as center/nodal line slope, have been developed to extract these dynamics. However, the extracted dynamics can depend heavily on subjective choices, such as the region selected for CLS analysis or the chosen models. In this study, we introduce a novel approach to extracting dynamics from ultrafast two-dimensional infrared (2D IR) spectra by using dynamic mode decomposition (DMD). As a data-driven method, DMD directly extracts spatiotemporal structures from the complex 2D IR spectra. We evaluated the performance of DMD in simulated and experimental spectra containing overlapped peaks. We show that DMD can retrieve the dynamics of overlapped transitions and cross peaks that are typically challenging to extract with traditional methods. In addition, we demonstrate that combining conditional generative adversarial neural networks with DMD can recover dynamics even at low signal-to-noise ratios. DMD methods do not require preliminary assumptions and can be readily extended to other multidimensional spectroscopies.

10.
J Phys Chem B ; 127(43): 9399-9404, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870992

RESUMO

Reverse micelles (RMs) provide a unique and highly tunable model system to study water in confined environments. The complex properties of water within RMs arise from the disruption of extended hydrogen bond (H-bond) networks that mediate local and long-range dynamics in bulk aqueous systems. Modulating the water pool size influences its H-bond dynamics, with smaller RMs increasingly restricting the H-bond network rearrangements leading to slower dynamics; however, within small confined systems, the dynamics of the surfactants also influence the water dynamics. Using ultrafast two-dimensional infrared spectroscopy, we investigate the effects of RM size on the surfactant headgroup rotamer populations and picosecond interfacial H-bond dynamics of aerosol-OT surfactants. We find that the increased water penetration accelerates H-bond dynamics, with larger RMs showing faster dynamics. These results imply that the changes in the RM structure alter the physical structure of the RM interface and thus alter the solvation dynamics. The findings in this study can be used for developing models for structure-specific solvation dynamics that account for the surfactant packing and hydration at the interface.

11.
Commun Biol ; 6(1): 900, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660224

RESUMO

Actin, an important component of eukaryotic cell cytoskeleton, regulates cell shape and transport. The morphology and biochemical properties of actin filaments are determined by their structure and protein-protein contacts. Crowded environments can organize filaments into bundles, but less is known about how they affect F-actin structure. This study used 2D IR spectroscopy and spectral calculations to examine how crowding and bundling impact the secondary structure and local environments in filaments and weakly or strongly bundled networks. The results reveal that bundling induces changes in actin's secondary structure, leading to a decrease in ß-sheet and an increase in loop conformations. Strongly bundled networks exhibit a decrease in backbone solvent exposure, with less perturbed α-helices and nearly "locked" ß-sheets. Similarly, the loops become less hydrated but maintain a dynamic environment. These findings highlight the role of loop structure in actin network morphology and stability under morphology control by PEG.


Assuntos
Citoesqueleto de Actina , Actinas , Estrutura Secundária de Proteína , Citoesqueleto , Forma Celular
12.
MethodsX ; 11: 102309, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37577166

RESUMO

Fourier-transform infrared (FTIR) spectroscopy using vibrational probes is an ideal tool to detect changes in structure and local environments within biological molecules. However, challenges arise when dealing with weak infrared probes, such as thiocyanates, due to their inherent low signal strengths and overlap with solvent bands. In this protocol we demonstrate:•A streamlined approach for the precise extraction of weak infrared absorption lineshapes from a strong solvent background.•A protocol combining a spectral filter, background modeling, and subtraction.•Our methodology successfully extracts the CN stretching mode peak from methyl thiocyanate at remarkably low concentrations (0.25 mM) in water, previously a challenge for FTIR spectroscopy.This approach offers valuable insights and tools for more accurate FTIR measurements using weak vibrational probes. This enhanced precision can potentially enable new approaches to enhance our understanding of protein structure and dynamics in solution.

13.
Chemphyschem ; 24(20): e202300404, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37486881

RESUMO

Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.


Assuntos
Células Artificiais , Gotículas Lipídicas , Espectrofotometria Infravermelho/métodos , Ligação de Hidrogênio , Água/química , Tensoativos/química , Glicolipídeos
14.
Biophys J ; 122(9): E1-E5, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36948189
15.
J Phys Chem B ; 127(12): 2829-2836, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36926899

RESUMO

Characterizing electrostatic interactions at heterogeneous interfaces is critical for developing a fundamental description of the dynamic processes at charged interfaces. Water-in-oil reverse micelles (RMs) offer a high degree of tunability across composition, polarity, and temperature, making them ideal systems for studying interactions at heterogeneous liquid-liquid interfaces. In the present study, we use a combination of ultrafast two-dimensional infrared spectroscopy and molecular dynamics (MD) simulations to determine the picosecond interfacial dynamics in RMs containing binary compositions of sorbitan monostearate and anionic or cationic cosurfactants, which are used to tune the ratio of charged to nonionic surfactants at the interface. The positively charged polyethylenimine (PEI) polymer is encapsulated within the RMs, and the carbonyl stretching mode of sorbitan monostearate reports on the interfacial hydrogen-bond populations and dynamics. The results show that hydrogen-bond populations are altered through the inclusion of both negatively and positively charged cosurfactants. Charged surfactants increase interfacial water penetration into the surfactant layer, and the surface localization of polymers decreases water penetration. Local hydrogen-bond dynamics undergo a slowdown with the inclusion of charged surfactants, and the encapsulation of polymers results in similar effects, irrespective of the charge.

16.
Opt Express ; 31(2): 2700-2709, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785278

RESUMO

BoxCARS and pump-probe geometries are common implementations of two-dimensional infrared (2D IR) spectroscopy. BoxCARS is background-free, generally offering greater signal-to-noise ratio, which enables measuring weak vibrational echo signals. Pulse shapers have been implemented in the pump-probe geometry to accelerate data collection and suppress scatter and other unwanted signals by precise control of the pump-pulse delay and carrier phase. Here, we introduce a 2D-IR optical setup in the BoxCARS geometry that implements a pulse shaper for rapid acquisition of background-free 2D IR spectra. We show a signal-to-noise improvement using this new fast-scan BoxCARS setup versus the pump-probe geometry within the same configuration.

17.
J Phys Chem B ; 127(8): 1771-1779, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36795462

RESUMO

Living cells feature lipid compartments which exhibit a variety of shapes and structures that assist essential cellular processes. Many natural cell compartments frequently adopt convoluted nonlamellar lipid architectures that facilitate specific biological reactions. Improved methods for controlling the structural organization of artificial model membranes would facilitate investigations into how membrane morphology affects biological functions. Monoolein (MO) is a single-chain amphiphile which forms nonlamellar lipid phases in aqueous solution and has wide applications in nanomaterial development, the food industry, drug delivery, and protein crystallization. However, even if MO has been extensively studied, simple isosteres of MO, while readily accessible, have seen limited characterization. An improved understanding of how relatively minor changes in lipid chemical structure affect self-assembly and membrane topology could instruct the construction of artificial cells and organelles for modeling biological structures and facilitate nanomaterial-based applications. Here, we investigate the differences in self-assembly and large-scale organization between MO and two MO lipid isosteres. We show that replacing the ester linkage between the hydrophilic headgroup and hydrophobic hydrocarbon chain with a thioesther or amide functional group results in the assembly of lipid structures with different phases not resembling those formed by MO. Using light and cryo-electron microscopy, small-angle X-ray scattering, and infrared spectroscopy, we demonstrate differences in the molecular ordering and large-scale architectures of the self-assembled structures made from MO and its isosteric analogues. These results improve our understanding of the molecular underpinnings of lipid mesophase assembly and may facilitate the development of MO-based materials for biomedicine and as model lipid compartments.


Assuntos
Glicerídeos , Proteínas , Microscopia Crioeletrônica , Glicerídeos/química , Cristalização
18.
Biophys Rep (N Y) ; 2(3)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36176716

RESUMO

Membrane protein conformations and dynamics are driven by the protein-lipid interactions occurring within the local environment of the membrane. These environments remain challenging to accurately capture in structural and biophysical experiments using bilayers. Consequently, there is an increasing need for realistic cell-membrane mimetics for in vitro studies. Lipid nanodiscs provide certain advantages over vesicles for membrane protein studies. Nanodiscs are increasingly used for structural and spectroscopic characterization of membrane proteins. Despite the common use of nanodiscs, the interfacial environments of lipids confined to a ~10-nm diameter area have remained relatively underexplored. Here, we use ultrafast two-dimensional infrared spectroscopy and temperature-dependent infrared absorption measurements of the ester carbonyls to compare the interfacial hydrogen bond structure and dynamics in lipid nanodiscs of varying lipid compositions and sizes with ~100-nm vesicles. We examine the effects of lipid composition and nanodisc size. We found that nanodiscs and vesicles share largely similar lipid-water H-bond environments and interfacial dynamics. Differences in measured enthalpies of H-bonding suggest that H-bond dynamics in nanodiscs are modulated by the interaction between the annular lipids and the scaffold protein.

19.
Cell Calcium ; 107: 102651, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116246

RESUMO

The plasma membrane (NCX) and mitochondrial (NCLX) Na+/Ca2+ exchangers are structurally related proteins, although they operate under strictly different ionic conditions and membrane potentials. In contrast with NCX, NCLX can transport either Li+ or Na+ in exchange for Ca2+. Whereas the crystal structure of the archaeal NCX (NCX_Mj) describes the binding sites for alternative binding of 3Na+ or 1Ca2+, these features remain elusive for NCLX due to the lack of structural information. To elucidate the ion-binding features of mitochondrial NCLX, we analyzed here the Li+-transporting NCLX_Mj mutant, produced by replacing the ion-coordinating residues in the archaeal NCX (NCX_Mj) to match the ion-coordinating residues of human NCLX. The NCLX_Mj-mediated Na+/Ca2+ or Li+/Ca2+ exchange rates are insensitive to varying voltage, consistent with an electroneutral ion exchange. Molecular dynamics (MD) simulations revealed that NCLX_Mj contains two novel Li+ binding sites with four ion-coordinating residues, derived from the three Na+ binding sites of NCX_Mj. The ion-coordination modes, observed in the MD simulations, were further supported by two-dimensional infrared (2D IR) spectroscopy and by testing the mutational effects on the ion fluxes. Collectively, our results revealed a structural basis for Li+ binding and electroneutral transport (2Na+/Li+:1Ca2+) by NCLX_Mj, meaning that the NCLX-mediated electroneutral transport may predefine mitochondrial Ca2+ and Na+ signaling to modulate cellular functions.


Assuntos
Cálcio , Trocador de Sódio e Cálcio , Humanos , Sítios de Ligação , Cálcio/metabolismo , Transporte de Íons , Íons/metabolismo , Lítio , Sódio/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Mitocôndrias
20.
Chem Sci ; 13(34): 9980-9984, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128234

RESUMO

Dimethyl sulfoxide (DMSO) increases cell and tissue viability at low temperatures and is commonly used as a cryoprotectant for cryogenic storage of biological materials. DMSO disorders the water hydrogen-bond networks and inhibits ice-crystal growth, though the specific DMSO interactions with water are difficult to characterize. In this study, we use a combination of Fourier Transform infrared spectroscopy (FTIR), molecular dynamics simulations, and vibrational frequency maps to characterize the temperature-dependent hydrogen bonding interactions of DMSO with water from 30 °C to -80 °C. Specifically, broad peaks in O-D stretch vibrational spectra of DMSO and deuterated water (HDO) cosolvent systems show that the hydrogen bond networks become increasingly disrupted compared to pure water. Simulations demonstrated that these disrupted hydrogen bond networks remain largely localized to the first hydration shell of DMSO, which explains the high DMSO concentrations needed to prevent ice crystal formation in cryopreservation applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA