Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(9): 6028-6040, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38370455

RESUMO

Norovirus (NoV) infection is one of the most common non-bacterial causes of gastroenteritis among the population worldwide. From the point of view of medical diagnostics, it is important to develop a system that would sensitively and selectively detect norovirus from a patient's sample in order to control and limit its spread. In this paper, we present a stable and sensitive NoV (mouse model) detection matrix in infected food samples. The bio-platform was made of a modified gold electrode with a self-assembled l-cysteine monolayer, covered with gold nanoparticles, a linker and an antibody specific to the VP1 surface protein of the virus. Binding of the VP1 protein to the antibody caused a decrease in the current strength confirmed by electrochemical techniques - cyclic voltammetry (CV) and differential pulse voltammetry. The reduction of the current was proportional to the concentration of NoV sample. The biosensors showed high sensitivity and linearity in a range from 1 × 10-9 to 1 × 10-18 TCID50, with the detection limit of 1 × 10-18 TCID50. CV showed a diffusion-controlled process. In addition, each modification step was confirmed by scanning electron microscopy, electrochemical impedance spectroscopy, and CV. The described immunosensor showed excellent recovery values, good linearity and long-term stability, crucial parameters for biosensor construction.

2.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36679398

RESUMO

This article presents a novel and selective electrochemical bioassay with antibody and laccase for the determination of free thyroid hormone (free triiodothyronine, fT3). The biosensor was based on a glassy carbon electrode modified with a Fe3O4@graphene nanocomposite with semiconducting properties, an antibody (anti-PDIA3) with high affinity for fT3, and laccase, which was responsible for catalyzing the redox reaction of fT3. The electrode modification procedure was investigated using a cyclic voltammetry technique, based on the response of the peak current after modifications. All characteristic working parameters of the developed biosensor were analyzed using differential pulse voltammetry. Obtained experimental results showed that the biosensor revealed a sensitive response to fT3 in a concentration range of 10-200 µM, a detection limit equal to 27 nM, and a limit of quantification equal to 45.9 nM. Additionally, the constructed biosensor was selective towards fT3, even in the presence of interference substances: ascorbic acid, tyrosine, and levothyroxine, and was applied for the analysis of fT3 in synthetic serum samples with excellent recovery results. The designed biosensor also exhibited good stability and can find application in future medical diagnostics.


Assuntos
Técnicas Biossensoriais , Grafite , Nanocompostos , Grafite/química , Lacase/química , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Técnicas Biossensoriais/métodos , Hormônios Tireóideos , Eletrodos , Limite de Detecção
3.
RSC Adv ; 12(39): 25342-25353, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199318

RESUMO

The main goal of the presented study was to design a biosensor-based system for epinephrine (EP) detection using a poly-thiophene derivative and tyrosinase as a biorecognition element. We compared two different electroanalytical techniques to select the most prominent technique for analyzing the neurotransmitter. The prepared biosensor system exhibited good parameters; the differential pulse (DPV) technique presented a wide linear range (1-20 µM and 30-200 µM), with a low detection limit (0.18 nM and 1.03 nM). In the case of chronoamperometry (CA), a high signal-to-noise ratio and lower reproducibility were observed, causing a less broad linear range (10-200 µM) and a higher detection limit (125 nM). Therefore, the DPV technique was used for the calculation of sensitivity (0.0011 µA mM-1 cm-2), stability (49 days), and total surface coverage (4.18 × 10-12 mol cm-2). The biosensor also showed very high selectivity in the presence of common interfering species (i.e. ascorbic acid, uric acid, norepinephrine, dopamine) and was successfully applied for EP determination in a pharmaceutical sample.

4.
ACS Omega ; 7(38): 33749-33768, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188279

RESUMO

The study of neurotransmitters and stress hormones allows the determination of indicators of the current stress load in the body. These species also create a proper strategy of stress protection. Nowadays, stress is a general factor that affects the population, and it may cause a wide range of serious disorders. Abnormalities in the level of neurohormones, caused by chronic psychological stress, can occur in, for instance, corporate employees, health care workers, shift workers, policemen, or firefighters. Here we present a new nanomaterials-based sensors technology development for the determination of neurohormones. We focus on fluorescent sensors/biosensors that utilize nanomaterials, such as quantum dots or carbon nanomaterials. Nanomaterials, owing to their diversity in size and shape, have been attracting increasing attention in sensing or bioimaging. They possess unique properties, such as fluorescent, electronic, or photoluminescent features. In this Review, we summarize new trends in adopting nanomaterials for applications in fluorescent sensors for neurohormone monitoring.

5.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014704

RESUMO

The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0-10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM-1 cm-2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.

6.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916125

RESUMO

Over the past two decades, both fundamental and applied research in conducting polymers have grown rapidly. Conducting polymers (CPs) are unique due to their ease of synthesis, environmental stability, and simple doping/dedoping chemistry. Electrically conductive silicone polymers are the current state-of-the-art for, e.g., optoelectronic materials. The combination of inorganic elements and organic polymers leads to a highly electrically conductive composite with improved thermal stability. Silicone-based materials have a set of extremely interesting properties, i.e., very low surface energy, excellent gas and moisture permeability, good heat stability, low-temperature flexibility, and biocompatibility. The most effective parameters constructing the physical properties of CPs are conjugation length, degree of crystallinity, and intra- and inter-chain interactions. Conducting polymers, owing to their ease of synthesis, remarkable environmental stability, and high conductivity in the doped form, have remained thoroughly studied due to their varied applications in fields like biological activity, drug release systems, rechargeable batteries, and sensors. For this reason, this review provides an overview of organosilicon polymers that have been reported over the past two decades.

7.
Sensors (Basel) ; 20(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823962

RESUMO

Although neurotransmitters are present in human serum at the nM level, any dysfunction of the catecholamines concentration may lead to numerous serious health problems. Due to this fact, rapid and sensitive catecholamines detection is extremely important in modern medicine. However, there is no device that would measure the concentration of these compounds in body fluids. The main goal of the present study is to design a simple as possible, cost-effective new biosensor-based system for the detection of neurotransmitters, using nontoxic reagents. The miniature Au-E biosensor was designed and constructed through the immobilization of tyrosinase on an electroactive layer of cysteamine and carbon nanoparticles covering the gold electrode. This sensing arrangement utilized the catalytic oxidation of norepinephrine (NE) to NE quinone, measured with voltammetric techniques: cyclic voltammetry and differential pulse voltammetry. The prepared bio-system exhibited good parameters: a broad linear range (1-200 µM), limit of detection equal to 196 nM, limit of quantification equal to 312 nM, and high selectivity and sensitivity. It is noteworthy that described method was successfully applied for NE determination in real samples.


Assuntos
Técnicas Biossensoriais , Carbono/química , Técnicas Eletroquímicas , Monofenol Mono-Oxigenase/química , Norepinefrina/análise , Análise Custo-Benefício , Eletrodos , Ouro , Humanos , Limite de Detecção
8.
Polymers (Basel) ; 12(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443618

RESUMO

In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.

9.
Sensors (Basel) ; 20(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151107

RESUMO

A novel fluorescence-sensing pathway for epinephrine (EP) detection was investigated. The ceramic-based miniature biosensor was developed through the immobilization of an enzyme (laccase, tyrosinase) on a polymer-poly-(2,6-di([2,2'-bithiophen]-5-yl)-4-(5-hexylthiophen-2-yl)pyridine), based on low temperature cofired ceramics technology (LTCC). The detection procedure was based on the oxidation of the substrate, i.e., in the presence of the enzyme. An alternative enzyme-free system utilized the formation of a colorful complex between Fe2+ ions and epinephrine molecules. With the optimized conditions, the analytical performance illustrated high sensitivity and selectivity in a broad linear range with a detection limit of 0.14-2.10 nM. Moreover, the strategy was successfully used for an EP injection test with labeled pharmacological samples.

10.
Sensors (Basel) ; 20(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940833

RESUMO

A convenient electrochemical sensing pathway was investigated for neurotransmitter detection based on newly synthesized silole derivatives and laccase/horseradish-peroxidase-modified platinum (Pt)/gold (Au) electrodes. The miniature neurotransmitter's biosensors were designed and constructed via the immobilization of laccase in an electroactive layer of the Pt electrode coated with poly(2,6-bis(3,4-ethylenedioxythiophene)-4-methyl-4-octyl-dithienosilole) and laccase for serotonin (5-HT) detection, and a Au electrode modified with the electroconducting polymer poly(2,6-bis(selenophen-2-yl)-4-methyl-4-octyl-dithienosilole), along with horseradish peroxidase (HRP), for dopamine (DA) monitoring. These sensing arrangements utilized the catalytic oxidation of neurotransmitters to reactive quinone derivatives (the oxidation process was provided in the enzymes' presence). Under the optimized conditions, the analytical performance demonstrated a convenient degree of sensitivity: 0.0369 and 0.0256 µA mM-1 cm-2, selectivity in a broad linear range (0.1-200) × 10-6 M) with detection limits of ≈48 and ≈73 nM (for the serotonin and dopamine biosensors, respectively). Moreover, the method was successfully applied for neurotransmitter determination in the presence of interfering compounds (ascorbic acid, L-cysteine, and uric acid).


Assuntos
Peroxidase do Rábano Silvestre/metabolismo , Lacase/metabolismo , Neurotransmissores/análise , Técnicas Biossensoriais , Catálise , Dopamina/urina , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/metabolismo , Ouro/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Microscopia de Força Atômica , Oxirredução , Platina/química , Polímeros/química , Serotonina/urina , Compostos de Silício/química
11.
Sensors (Basel) ; 18(8)2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042294

RESUMO

The clinical applications of sensing tools (i.e., biosensors) for the monitoring of physiologically important analytes are very common. Nowadays, the biosensors are being increasingly used to detect physiologically important analytes in real biological samples (i.e., blood, plasma, urine, and saliva). This review focuses on biosensors that can be applied to continuous, time-resolved measurements with fluorescence. The material presents the fluorescent biosensors for the detection of neurotransmitters, hormones, and other human metabolites as glucose, lactate or uric acid. The construction of microfluidic devices based on fluorescence uses a variety of materials, fluorescent dyes, types of detectors, excitation sources, optical filters, and geometrical systems. Due to their small size, these devices can perform a full analysis. Microfluidics-based technologies have shown promising applications in several of the main laboratory techniques, including blood chemistries, immunoassays, nucleic-acid amplification tests. Of the all technologies that are used to manufacture microfluidic systems, the LTCC technique seems to be an interesting alternative. It allows easy integration of electronic and microfluidic components on a single ceramic substrate. Moreover, the LTCC material is biologically and chemically inert, and is resistant to high temperature and pressure. The combination of all these features makes the LTCC technology particularly useful for implementation of fluorescence-based detection in the ceramic microfluidic systems.


Assuntos
Técnicas Biossensoriais/métodos , Líquidos Corporais/química , Corantes Fluorescentes/análise , Animais , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA