Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Catal ; 14(5): 2883-2896, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449532

RESUMO

The catalytic dehydrogenation of substituted alkenones on noble metal catalysts supported on carbon (Pt/C, Pd/C, Rh/C, and Ru/C) was investigated in an organic phase under inert conditions. The dehydrogenation and semihydrogenation of the enone starting materials resulted in aromatic compounds (primary products), saturated cyclic ketones (secondary products), and cyclic alcohols (minor products). Pd/C exhibits the highest catalytic activity, followed by Pt/C and Rh/C. Aromatic compounds remain the primary products, even in the presence of hydrogen donors. Joint experimental and theoretical analyses showed that the four catalytic materials stabilize a common dienol intermediate on the metal surfaces, formed by keto-enol tautomerization. This intermediate subsequently forms aromatic products upon dehydrogenation. The binding orientation of the enone reactants on the catalytic surface is strongly metal-dependent, as the M-O bond distance changes substantially according to the metal. The longer M-O bonds (Pt: 2.84 Å > Pd: 2.23 Å > Rh: 2.17 Å > Ru: 2.07 Å) correlate with faster reaction rates and more favorable keto-enol tautomerization, as shorter distances correspond to a more stabilized starting material. Tautomerization is shown to occur via a stepwise surface-assisted pathway. Overall, each of the studied metals exhibits a distinct balance of enthalpy and entropy of activation (ΔH°‡, ΔS°‡), offering unique possibilities in the realm of enone dehydrogenation reactions that can be achieved by suitable selection of catalytic materials.

3.
Doc Ophthalmol ; 147(3): 147-164, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37938426

RESUMO

PURPOSE: To establish the extent of agreement for ISCEV standard reference pattern reversal VEPs (prVEPs) acquired at three European centres, to determine any effect of sex, and to establish reference intervals from birth to adolescence. METHODS: PrVEPs were recorded from healthy reference infants and children, aged 2 weeks to 16 years, from three centres using closely matched but non-identical protocols. Amplitudes and peak times were modelled with orthogonal quadratic and sigmoidal curves, respectively, and two-sided limits, 2.5th and 97.5th centiles, estimated using nonlinear quantile Bayesian regression. Data were compared by centre and by sex using median quantile confidence intervals. The 'critical age', i.e. age at which P100 peak time ceased to shorten, was calculated. RESULTS: Data from the three centres were adequately comparable. Sex differences were not clinically meaningful. The pooled data showed rapid drops in P100 peak time which stabilised by 27 and by 34 weeks for large and small check widths, respectively. Post-critical-age reference limits were 87-115 ms and 96-131 ms for large and small check widths, respectively. Amplitudes varied markedly and reference limits for all ages were 5-57 µV and 3.5-56 µV for large and small check widths, respectively. CONCLUSIONS: PrVEP reference data could be combined despite some methodology differences within the tolerances of the ISCEV VEP Standard, supporting the clinical benefit of ISCEV Standards. Comparison with historical data is hampered by lack of minimum reporting guidelines. The reference data presented here could be validated or transformed for use elsewhere.


Assuntos
Eletrorretinografia , Potenciais Evocados Visuais , Lactente , Adolescente , Humanos , Criança , Masculino , Feminino , Voluntários Saudáveis , Teorema de Bayes
4.
Chem Commun (Camb) ; 59(54): 8444-8447, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37337749

RESUMO

Primary and secondary amines selectively react with the lactone moiety of γ-valerolactone oxide (GVLO). Several primary amines afforded the resulting epoxyamides with an intact epoxy group. In some cases addition of two equivalents of amine resulted in additional epoxide opening to give α,γ-dihydroxy-ß-amino-amides. The selective lactone-opening in GVLO was further corroborated by DFT-studies.

5.
Angew Chem Int Ed Engl ; 62(26): e202301329, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36847781

RESUMO

The enantioselective hydrogenation of cyclic enamides has been achieved using an earth-abundant cobalt-bisphosphine catalyst. Using CoCl2 /(S,S)-Ph-BPE, several trisubstituted carbocyclic enamides were reduced with high activity and excellent enantioselectivity (up to 99 %) to the corresponding saturated amides. The methodology can be extended to the synthesis of chiral amines by base hydrolysis of the hydrogenation products. Preliminary mechanistic investigations reveal the presence of a high spin cobalt (II) species in the catalytic cycle. We propose that the hydrogenation of the carbon-carbon double bond proceeds via a sigma-bond-metathesis pathway.


Assuntos
Amidas , Cobalto , Amidas/química , Hidrogenação , Estereoisomerismo , Catálise , Carbono
6.
ChemSusChem ; 16(9): e202202353, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752680

RESUMO

Direct asymmetric reductive amination of bio-based levulinic acid (LA) to the enantioenriched 5-methylpyrrolidinone is achieved by using a readily available chiral Ru/bisphosphine catalyst with excellent enantioselectivity (up to 96 % ee) and high isolated yield (up to 89 %). Methyl levulinate (ML), a byproduct from the industrial production of 2,5-furandicarboxylic acid (FDCA), can be used instead of LA with similar reactivity and selectivity. Mass spectrometry and isotope labelling studies indicate that the chiral lactam is formed via imine-enamine tautomerization/cyclization followed by asymmetric hydrogenation of the cyclic enamide.

7.
Angew Chem Int Ed Engl ; 62(3): e202208693, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36317985

RESUMO

The intracrystalline ionic environment in microporous zeolite can remarkably modify the excess chemical potential of adsorbed reactants and transition states, thereby influencing the catalytic turnover rates. However, a limit of the rate enhancement for aqueous-phase dehydration of alcohols appears to exist for zeolites with high ionic strength. The origin of such limitation has been hypothesized to be caused by the spatial constraints in the pores via, e.g., size exclusion effects. It is demonstrated here that the increase in turnover rate as well as the formation of a maximum and the rate drop are intrinsic consequences of the increasingly dense ionic environment in zeolite. The molecularly sized confines of zeolite create a unique ionic environment that monotonically favors the formation of alcohol-hydronium ion complexes in the micropores. The zeolite microporous environment determines the kinetics of catalytic steps and tailors the impact of ionic strength on catalytic rates.

8.
Front Med (Lausanne) ; 10: 1294559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196833

RESUMO

Introduction: The development of costs-effective and sensitive screening solutions to prevent amblyopia and identify its risk factors (strabismus, refractive problems or mixed) is a significant priority of pediatric ophthalmology. The main objective of our study was to compare the classification performance of various vision screening tests, including classic, stereoacuity-based tests (Lang II, TNO, Stereo Fly, and Frisby), and non-stereoacuity-based, low-density static, dynamic, and noisy anaglyphic random dot stereograms. We determined whether the combination of non-stereoacuity-based tests integrated in the simplest artificial intelligence (AI) model could be an alternative method for vision screening. Methods: Our study, conducted in Spain and Hungary, is a non-experimental, cross-sectional diagnostic test assessment focused on pediatric eye conditions. Using convenience sampling, we enrolled 423 children aged 3.6-14 years, diagnosed with amblyopia, strabismus, or refractive errors, and compared them to age-matched emmetropic controls. Comprehensive pediatric ophthalmologic examinations ascertained diagnoses. Participants used filter glasses for stereovision tests and red-green goggles for an AI-based test over their prescribed glasses. Sensitivity, specificity, and the area under the ROC curve (AUC) were our metrics, with sensitivity being the primary endpoint. AUCs were analyzed using DeLong's method, and binary classifications (pathologic vs. normal) were evaluated using McNemar's matched pair and Fisher's nonparametric tests. Results: Four non-overlapping groups were studied: (1) amblyopia (n = 46), (2) amblyogenic (n = 55), (3) non-amblyogenic (n = 128), and (4) emmetropic (n = 194), and a fifth group that was a combination of the amblyopia and amblyogenic groups. Based on AUCs, the AI combination of non-stereoacuity-based tests showed significantly better performance 0.908, 95% CI: (0.829-0.958) for detecting amblyopia and its risk factors than most classical tests: Lang II: 0.704, (0.648-0.755), Stereo Fly: 0.780, (0.714-0.837), Frisby: 0.754 (0.688-0.812), p < 0.02, n = 91, DeLong's method). At the optimum ROC point, McNemar's test indicated significantly higher sensitivity in accord with AUCs. Moreover, the AI solution had significantly higher sensitivity than TNO (p = 0.046, N = 134, Fisher's test), as well, while the specificity did not differ. Discussion: The combination of multiple tests utilizing anaglyphic random dot stereograms with varying parameters (density, noise, dynamism) in AI leads to the most advanced and sensitive screening test for identifying amblyopia and amblyogenic conditions compared to all the other tests studied.

9.
Chem Commun (Camb) ; 58(94): 13091-13094, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36342084

RESUMO

Methyl vinyl glycolate (MVG) can be obtained by acid-catalyzed conversion of C4 and C6 sugars. Applications of MVG in polymers are so far limited to its use as co-monomer for poly(lactic acid) and as crosslinking agent. In this work, hydroformylation and methoxycarbonylation of MVG were investigated to produce novel bifunctional monomers. Polyesters with high renewable-atom content were successfully prepared and characterized.


Assuntos
Glicolatos , Poliésteres , Polímeros , Cloreto de Polivinila
10.
ChemSusChem ; 15(20): e202201264, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35947792

RESUMO

Biomass derived glycolaldehyde was employed as C1 building block for the N-formylation of secondary amines using air as oxidant. The reaction is atom economic, highly selective and proceeds under catalyst free conditions. This strategy can be used for the synthesis of cyclic and acyclic formylamines, including DMF. Mechanistic studies suggest a radical oxidation pathway.


Assuntos
Acetaldeído , Aminas , Catálise , Oxidantes
11.
Chem Commun (Camb) ; 58(35): 5415-5418, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35416214

RESUMO

Silicon-modified polyureas were depolymerized by hydrogenation in the presence of Ru and Mn catalysts. Yields of up to 84% of the aliphatic diamine and 81% of silicon-containing diamine were achieved with a commercially available PNP-Ru catalyst.


Assuntos
Diaminas , Silício , Catálise , Hidrogenação , Polímeros
12.
Angew Chem Int Ed Engl ; 60(47): 24806-24810, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384139

RESUMO

The impact of the concentration of hydrated hydronium ions and in turn of the local ionic strength in MFI zeolites has been investigated for the aqueous phase dehydration of 4-methylcyclohexanol (E1 mechanism) and cis-2-methylcyclohexanol (E2 mechanism). The E2 pathway with the latter alcohol led to a 2.5-fold higher activity. The catalytic activity normalized to the hydronium ions (turnover frequency, TOF) passed through a pronounced maximum, which is attributed to the increasing excess chemical potential of the alcohols in the pores, increasing in parallel with the ionic strength and the additional work caused by repulsive interactions and charge separation induced by the bulky alcohols. While the maximum in rate observed is invariant with the mechanism or substitution, the reaction pathway is influencing the activation parameters differently.

13.
Science ; 372(6545): 952-957, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33958482

RESUMO

Tailoring the molecular environment around catalytically active sites allows for the enhancement of catalytic reactivity through a hitherto unexplored pathway. In zeolites, the presence of water creates an ionic environment via the formation of hydrated hydronium ions and the negatively charged framework aluminum tetrahedra. The high density of cation-anion pairs determined by the aluminum concentration of a zeolite induces a high local ionic strength that increases the excess chemical potential of sorbed and uncharged organic reactants. Charged transition states (carbocations for example) are stabilized, which reduces the energy barrier and leads to higher reaction rates. Using the intramolecular dehydration of cyclohexanol on H-MFI zeolites in water, we quantitatively show an enhancement of the reaction rate by the presence of high ionic strength as well as show potential limitations of this strategy.

14.
15.
Angew Chem Int Ed Engl ; 58(11): 3450-3455, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30600885

RESUMO

In the presence of sufficient concentrations of water, stable, hydrated hydronium ions are formed in the pores and at the surface of solid acids such as zeolites. For a medium-pore zeolite, such as zeolite MFI, hydrated hydronium ions consist of eight water molecules and have an effective volume of 0.24 nm3 . In their presence, larger organic molecules can only adsorb in the portions of the pore that are not occupied by hydronium ions. As a consequence, the available pore volume decreases proportionally to the concentration of the hydronium ions. The higher charge density (the increasing ionic strength) that accompanies an increasing concentration of hydronium ions leads to an increase in the activity coefficients of the adsorbed substrates, thus, weakening the interactions between the organic part of the molecules and the zeolite and favoring the interactions with polar groups. The quantitative understanding of these interactions makes it possible to link a collective property such as hydrophilicity and hydrophobicity of zeolites to specific interactions on molecular level.

16.
Graefes Arch Clin Exp Ophthalmol ; 257(2): 413-423, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30284041

RESUMO

PURPOSE: Stereo vision tests are widely used in the clinical practice for screening amblyopia and amblyogenic conditions. According to literature, none of these tests seems to be suitable to be used alone as a simple and reliable tool. There has been a growing interest in developing new types of stereo vision tests, with sufficient sensitivity to detect amblyopia. This new generation of assessment tools should be computer based, and their reliability must be statistically warranted. The present study reports the clinical evaluation of a screening system based on random dot stereograms using a tablet as display. Specifically, a dynamic random dot stereotest with binocularly detectable Snellen-E optotype (DRDSE) was used and compared with the Lang II stereotest. METHODS: A total of 141 children (aged 4-14, mean age 8.9) were examined in a field study at the Department of Ophthalmology, Pécs, Hungary. Inclusion criteria consisted of diagnoses of amblyopia, anisometropia, convergent strabismus, and hyperopia. Children with no ophthalmic pathologies were also enrolled as controls. All subjects went through a regular pediatric ophthalmological examination before proceeding to the DRDSE and Lang II tests. RESULTS: DRDSE and Lang II tests were compared in terms of sensitivity and specificity for different conditions. DRDSE had a 100% sensitivity both for amblyopia (n = 11) and convergent strabismus (n = 21), as well as a 75% sensitivity for hyperopia (n = 36). However, the performance of DRDSE was not statistically significant when screening for anisometropia. On the other hand, Lang II proved to have 81.8% sensitivity for amblyopia, 80.9% for strabismus, and only 52.8% for hyperopia. The specificity of DRDSE was 61.2% for amblyopia, 67.3% for strabismus, and 68.6% for hyperopia, respectively. Conversely, Lang II showed about 10% better specificity, 73.8% for amblyopia, 79.2% for strabismus, and 77.9% for hyperopia. CONCLUSIONS: The DRDSE test has a better sensitivity for the detection of conditions such as amblyopia or convergent strabismus compared with Lang II, although with slightly lower specificity. If the specificity could be further improved by optimization of the stimulus parameters, while keeping the sensitivity high, DRDSE would be a promising stereo vision test for screening of amblyopia.


Assuntos
Transtornos da Visão/diagnóstico , Seleção Visual/métodos , Visão Binocular/fisiologia , Acuidade Visual/fisiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Transtornos da Visão/fisiopatologia
17.
Org Biomol Chem ; 16(7): 1172-1177, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29376180

RESUMO

A hydride transfer reaction with tertiary amines was observed in the presence of noble metals on a carbon support. Hydride transfer had been documented previously in terms of activated allyl-type carbon-carbon double bonds containing carbonyl derivatives in the presence of triethyl amine (conjugate reduction). The proposed mechanism is a hydride transfer reaction in which the metal serves as the reaction partner of the hydrido-metal iminium adduct formation. The saturation of a non-activated internal double bond containing compound, such as methyl oleate and trans-5-decene as substrates, was observed for the first time in this work. The pre-reduced catalyst samples showed high activity; in the presence of Pd/C, Pt/C and Rh/C partial to complete conversion was detected at 140 °C in a p-xylene solvent without molecular hydrogen. Higher molecular weight byproducts of the amines were formed, while in the case of the substrates negligible amounts of unreacted but double bond migrated species were present. There is a possibility of usage of alkyl amines other than triethylamine; thus use of tributyl-, tripentyl-, trihexylamine and N,N-diisopropylethylamine, as well as cyclic 1-ethylpyrrolidine and 1-ethylpiperidine, was investigated. Cyclic amines and diisopropyl derivatives as H sources produced the highest conversion, while amines with longer alkyl chains showed minor activity. As a clear indication of H-donation, the formation of unsaturated amine species such as 1-ethyl-pyrrole and pyridine was observed.

18.
Nat Commun ; 8: 14113, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252021

RESUMO

The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cß-H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces.

19.
Chemistry ; : 2436-2434, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27508526

RESUMO

Test New Article1 GodEarlyview.Publish-on-load testing.The role of the specific physicochemical properties of ZrO2 phases on Ni/ZrO2 has been explored with respect to the reduction of stearic acid. Conversion on pure m?ZrO2 is 1.3 times more active than on t?ZrO2 , whereas Ni/m?ZrO2 is three times more active than Ni/t?ZrO2 . Although the hydrodeoxygenation of stearic acid can be catalyzed solely by Ni, the synergistic interaction between Ni and the ZrO2 support causes the variations in the reaction rates. Adsorption of the carboxylic acid group on an oxygen vacancy of ZrO2 and the abstraction of the ??hydrogen atom with the elimination of the oxygen atom to produce a ketene is the key to enhance the overall rate. The hydrogenated intermediate 1?octadecanol is in turn decarbonylated to heptadecane with identical rates on all catalysts. Decarbonylation of 1?octadecanol is concluded to be limited by the competitive adsorption of reactants and intermediate. The substantially higher adsorption of propionic acid demonstrated by IR spectroscopy and the higher reactivity to O2 exchange reactions with the more active catalyst indicate that the higher concentration of active oxygen defects on m?ZrO2 compared to t?ZrO2 causes the higher activity of Ni/m?ZrO2 .

20.
Chemistry ; 21(4): 1567-77, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25431188

RESUMO

Sulfonated carbons were explored as functionalized supports for Ni nanoparticles to hydrodeoxygenate (HDO) phenol. Both hexadecane and water were used as solvents. The dual-functional Ni catalysts supported on sulfonated carbon (Ni/C-SO3H) showed high rates for phenol hydrodeoxygenation in liquid hexadecane, but not in water. Glucose and cellulose were precursors to the carbon supports. Changes in the carbons resulting from sulfonation of the carbons resulted in variations of carbon sheet structures, morphologies and the surface concentrations of acid sites. While the C-SO3H supports were active for cyclohexanol dehydration in hexadecane and water, Ni/C-SO3H only catalysed the reduction of phenol to cyclohexanol in water. The state of 3-5 nm grafted Ni particles was analysed by in situ X-ray absorption spectroscopy. The results show that the metallic Ni was rapidly formed in situ without detectable leaching to the aqueous phase, suggesting that just the acid functions on Ni/C-SO3H are inhibited in the presence of water. Using in situ IR spectroscopy, it was shown that even in hexadecane, phenol HDO is limited by the dehydration step. Thus, phenol HDO catalysis was further improved by physically admixing C-SO3H with the Ni/C-SO3H catalyst to balance the two catalytic functions. The minimum addition of 7 wt % C-SO3H to the most active of the Ni/C-SO3H catalysts enabled nearly quantitative conversion of phenol and the highest selectivity (90%) towards cyclohexane in 6 h, at temperatures as low as 473 K, suggesting that the proximity to Ni limits the acid properties of the support.


Assuntos
Carbono/química , Celulose/química , Glucose/química , Nanopartículas Metálicas/química , Níquel/química , Fenol/química , Sulfonas/química , Catálise , Oxirredução , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA