Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113460, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979168

RESUMO

The recruitment of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors underlies the strengthening of neuronal connectivity during learning and memory. This process is triggered by N-methyl-D-aspartate (NMDA) receptor-dependent postsynaptic Ca2+ influx. Synaptotagmin (Syt)-1 and -7 have been proposed as Ca2+ sensors for AMPA receptor exocytosis but are functionally redundant. Here, we identify a cytosolic C2 domain-containing Ca2+-binding protein, Copine-6, that forms a complex with AMPA receptors. Loss of Copine-6 expression impairs activity-induced exocytosis of AMPA receptors in primary neurons, which is rescued by wild-type Copine-6 but not Ca2+-binding mutants. In contrast, Copine-6 loss of function does not affect steady-state expression or tetrodotoxin-induced synaptic upscaling of surface AMPA receptors. Loss of Syt-1/Syt-7 significantly reduces Copine-6 protein expression. Interestingly, overexpression of wild-type Copine-6, but not the Ca2+-binding mutants, restores activity-dependent exocytosis of AMPA receptors in Syt-1/Syt-7 double-knockdown neurons. We conclude that Copine-6 is a postsynaptic Ca2+ sensor that mediates AMPA receptor exocytosis during synaptic potentiation.


Assuntos
Exocitose , Receptores de AMPA , Receptores de AMPA/metabolismo , Exocitose/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Cálcio/metabolismo
2.
J Neurosci ; 43(41): 6833-6840, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821232

RESUMO

The loss of excitatory synapses is known to underlie the cognitive deficits in Alzheimer's disease (AD). Although much is known about the mechanisms underlying synaptic loss in AD, how neurons compensate for this loss and whether this provides cognitive benefits remain almost completely unexplored. In this review, we describe two potential compensatory mechanisms implemented following synaptic loss: the enlargement of the surviving neighboring synapses and the regeneration of synapses. Because dendritic spines, the postsynaptic site of excitatory synapses, are easily visualized using light microscopy, we focus on a range of microscopy approaches to monitor synaptic loss and compensation. Here, we stress the importance of longitudinal dendritic spine imaging, as opposed to fixed-tissue imaging, to gain insights into the temporal dynamics of dendritic spine compensation. We believe that understanding the molecular mechanisms behind these and other forms of synaptic compensation and regeneration will be critical for the development of therapeutics aiming at delaying the onset of cognitive deficits in AD.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Humanos , Sinapses , Plasticidade Neuronal/fisiologia , Neurônios , Espinhas Dendríticas/fisiologia
3.
Open Biol ; 12(9): 220187, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36168806

RESUMO

Splicing factor proline- and glutamine-rich (SFPQ) is a nuclear RNA-binding protein that is involved in a wide range of physiological processes including neuronal development and homeostasis. However, the mislocalization and cytoplasmic aggregation of SFPQ are associated with the pathophysiology of amyotrophic lateral sclerosis (ALS). We have previously reported that zinc mediates SFPQ polymerization and promotes the formation of cytoplasmic aggregates in neurons. Here we characterize two familial ALS (fALS)-associated SFPQ variants, which cause amino acid substitutions in the proximity of the SFPQ zinc-coordinating centre (N533H and L534I). Both mutants display increased zinc-binding affinities, which can be explained by the presence of a second zinc-binding site revealed by the 1.83 Å crystal structure of the human SFPQ L534I mutant. Overexpression of these fALS-associated mutants significantly increases the number of SFPQ cytoplasmic aggregates in primary neurons. Although they do not affect the density of dendritic spines, the presence of SFPQ cytoplasmic aggregates causes a marked reduction in the levels of the GluA1, but not the GluA2 subunit of AMPA-type glutamate receptors on the neuronal surface. Taken together, our data demonstrate that fALS-associated mutations enhance the propensity of SFPQ to bind zinc and form aggregates, leading to the dysregulation of AMPA receptor subunit composition, which may contribute to neuronal dysfunction in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Mutação , Neurônios/metabolismo , Fator de Processamento Associado a PTB , Prolina/genética , Prolina/metabolismo , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/genética , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Zinco/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
4.
Elife ; 92020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267230

RESUMO

Axons span extreme distances and are subject to significant stretch deformations during limb movements or sudden head movements, especially during impacts. Yet, axon biomechanics, and its relation to the ultrastructure that allows axons to withstand mechanical stress, is poorly understood. Using a custom developed force apparatus, we demonstrate that chick dorsal root ganglion axons exhibit a tension buffering or strain-softening response, where its steady state elastic modulus decreases with increasing strain. We then explore the contributions from the various cytoskeletal components of the axon to show that the recently discovered membrane-associated actin-spectrin scaffold plays a prominent mechanical role. Finally, using a theoretical model, we argue that the actin-spectrin skeleton acts as an axonal tension buffer by reversibly unfolding repeat domains of the spectrin tetramers to release excess mechanical stress. Our results revise the current viewpoint that microtubules and their associated proteins are the only significant load-bearing elements in axons.


Assuntos
Actinas/fisiologia , Axônios/fisiologia , Espectrina/fisiologia , Animais , Fenômenos Biomecânicos , Células Cultivadas , Galinhas , Microtúbulos/fisiologia , Dobramento de Proteína , Espectrina/química , Estresse Mecânico
5.
Acta Neuropathol Commun ; 7(1): 200, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806024

RESUMO

Damage to axonal transport is an early pathogenic event in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer's disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer's disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biossíntese , Transporte Axonal/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Serina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/análise , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas de Drosophila , Drosophila melanogaster , Feminino , Lobo Frontal/química , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Células HEK293 , Humanos , Cinesinas , Masculino , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Fosforilação/fisiologia , Ratos , Serina/análise , Serina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA