Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(26): 266401, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996316

RESUMO

We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the ππ^{*} Dirac cones at the K[over ¯] point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.

2.
Nat Commun ; 11(1): 511, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980610

RESUMO

Two hundred years ago, Ampère discovered that electric loops in which currents of electrons are generated by a penetrating magnetic field can mutually interact. Here we show that Ampère's observation can be transferred to the quantum realm of interactions between triangular plaquettes of spins on a lattice, where the electrical currents at the atomic scale are associated with the orbital motion of electrons in response to the non-coplanarity of neighbouring spins playing the role of a magnetic field. The resulting topological orbital moment underlies the relation of the orbital dynamics with the topology of the spin structure. We demonstrate that the interactions of the topological orbital moments with each other and with the spins form a new class of magnetic interactions [Formula: see text] topological-chiral interactions [Formula: see text] which can dominate over the Dzyaloshinskii-Moriya interaction, thus opening a path for realizing new classes of chiral magnetic materials with three-dimensional magnetization textures such as hopfions.

3.
Sci Rep ; 9(1): 12563, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467321

RESUMO

We investigate the thermal reduction of TiO2 in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells.

4.
Nat Commun ; 10(1): 505, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705281

RESUMO

Many properties of real materials can be modeled using ab initio methods within a single-particle picture. However, for an accurate theoretical treatment of excited states, it is necessary to describe electron-electron correlations including interactions with bosons: phonons, plasmons, or magnons. In this work, by comparing spin- and momentum-resolved photoemission spectroscopy measurements to many-body calculations carried out with a newly developed first-principles method, we show that a kink in the electronic band dispersion of a ferromagnetic material can occur at much deeper binding energies than expected (Eb = 1.5 eV). We demonstrate that the observed spectral signature reflects the formation of a many-body state that includes a photohole bound to a coherent superposition of renormalized spin-flip excitations. The existence of such a many-body state sheds new light on the physics of the electron-magnon interaction which is essential in fields such as spintronics and Fe-based superconductivity.

5.
Nanoscale ; 10(24): 11498-11505, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29888770

RESUMO

The introduction of transition metal oxides for building nanodevices in information technology promises to overcome the scaling limits of conventional semiconductors and to reduce global power consumption significantly. However, oxide surfaces can exhibit heterogeneity on the nanoscale e.g. due to relaxation, rumpling, reconstruction, or chemical variations which demands for direct characterization of electronic transport phenomena down to the atomic level. Here we demonstrate that conductivity mapping is possible with true atomic resolution using the tip of a local conductivity atomic force microscope (LC-AFM) as the mobile nanoelectrode. The application to the prototypical transition metal oxide TiO2 self-doped by oxygen vacancies reveals the existence of highly confined current paths in the first stage of thermal reduction. Assisted by density functional theory (DFT) we propose that the presence of oxygen vacancies in the surface layer of such materials can introduce short range disturbances of the electronic structure with confinement of metallic states on the sub-nanometre scale. After prolonged reduction, the surfaces undergo reconstruction and the conductivity changes from spot-like to homogeneous as a result of surface transformation. The periodic arrangement of the reconstruction is clearly reflected in the conductivity maps as concluded from the simultaneous friction force and LC-AFM measurements. The second prototype metal oxide SrTiO3 also reveals a comparable transformation in surface conductivity from spot-like to homogeneous upon reduction showing the relevance of nanoscale inhomogeneities for the electronic transport properties and the utility of a high-resolution LC-AFM as a convenient tool to detect them.

6.
Sci Rep ; 8(1): 3774, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491379

RESUMO

Perovskites such as SrTiO3, BaTiO3, and CaTiO3 have become key materials for future energy-efficient memristive data storage and logic applications due to their ability to switch their resistance reversibly upon application of an external voltage. This resistance switching effect is based on the evolution of nanoscale conducting filaments with different stoichiometry and structure than the original oxide. In order to design and optimize memristive devices, a fundamental understanding of the interaction between electrochemical stress, stoichiometry changes and phase transformations is needed. Here, we follow the approach of investigating these effects in a macroscopic model system. We show that by applying a DC voltage under reducing conditions on a perovskite slab it is possible to induce stoichiometry polarization allowing for a controlled decomposition related to incongruent sublimation of the alkaline earth metal starting in the surface region. This way, self-formed mesoporous layers can be generated which are fully depleted by Sr (or Ba, Ca) but consist of titanium oxides including TiO and Ti3O with tens of micrometre thickness. This illustrates that phase transformations can be induced easily by electrochemical driving forces.

7.
J Phys Condens Matter ; 29(49): 495806, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29091051

RESUMO

Spin- and angle-resolved photoemission spectroscopy of thin Ag(1 1 1) films on ferromagnetic Fe(1 1 0) shows a series of spin-polarized peaks. These features derive from Ag sp-bands, which form quantum well states and resonances due to confinement by a spin-dependent interface potential barrier. The spin-up states are broader and located at higher binding energy than the corresponding spin-down states at [Formula: see text], although the differences attenuate near the Fermi level. The spin-down states display multiple gap openings, which interrupt their parabolic-like dispersion. First-principles calculations attribute these findings to the symmetry- and spin-selective hybridization of the Ag states with the exchange-split bands of the substrate.

8.
Phys Rev Lett ; 117(24): 247202, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009218

RESUMO

Using relativistic first-principles calculations, we show that the chemical trend of the Dzyaloshinskii-Moriya interaction (DMI) in 3d-5d ultrathin films follows Hund's first rule with a tendency similar to their magnetic moments in either the unsupported 3d monolayers or 3d-5d interfaces. We demonstrate that, besides the spin-orbit coupling (SOC) effect in inversion asymmetric noncollinear magnetic systems, the driving force is the 3d orbital occupations and their spin-flip mixing processes with the spin-orbit active 5d states control directly the sign and magnitude of the DMI. The magnetic chirality changes are discussed in the light of the interplay between SOC, Hund's first rule, and the crystal-field splitting of d orbitals.

9.
Nat Commun ; 7: 11779, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27257020

RESUMO

Magnetic skyrmions are localized, topologically protected spin structures that have been proposed for storing or processing information due to their intriguing dynamical and transport properties. Important in terms of applications is the recent discovery of interface stabilized skyrmions as evidenced in ultra-thin transition-metal films. However, so far only skyrmions at interfaces with a single atomic layer of a magnetic material were reported, which greatly limits their potential for application in devices. Here we predict the emergence of skyrmions in [4d/Fe2/5d]n multilayers, that is, structures composed of Fe biatomic layers sandwiched between 4d and 5d transition-metal layers. In these composite structures, the exchange and the Dzyaloshinskii-Moriya interactions that control skyrmion formation can be tuned separately by the two interfaces. This allows engineering skyrmions as shown based on density functional theory and spin dynamics simulations.

10.
Phys Rev Lett ; 114(16): 166801, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25955067

RESUMO

Heavy metal surface alloys represent model systems to study the correlation between electron scattering, spin-orbit interaction, and atomic structure. Here, we investigate the electron scattering from the atomic steps of monolayer BiAg_{2} on Ag(111) using quasiparticle interference measurements and density functional theory. We find that intraband transitions between states of opposite spin projection can occur via a spin-flip backward scattering mechanism driven by the spin-orbit interaction. The spin-flip scattering amplitude depends on the chemical composition of the steps, leading to total confinement for pure Bi step edges, and considerable leakage for mixed Bi-Ag step edges. Additionally, the different localization of the occupied and unoccupied surface bands at Ag and Bi sites leads to a spatial shift of the scattering potential barrier at pure Bi step edges.

11.
J Phys Condens Matter ; 26(27): 274202, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24935614

RESUMO

On the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa-Kohn-Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N - 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for n(0) ± 1/2 occupancies around the charge-neutral occupancy n0 (Janak's transition state model). The two methods give nearly identical results. Moreover the values calculated by the supercell method agree quite well with the Green function values. We point out an important difference between the 'global' U parameter calculated using Janak's theorem and the 'local' U of the Hubbard model.


Assuntos
Gálio/química , Campos Magnéticos , Imãs , Modelos Químicos , Semicondutores , Simulação por Computador
12.
Phys Rev Lett ; 111(15): 157205, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160626

RESUMO

We report on the epitaxial fabrication and electronic properties of a topological phase in strained α-Sn on InSb. The topological surface state forms in the presence of an unusual band order not based on direct spin-orbit coupling, as shown in density functional and GW slab-layer calculations. Angle-resolved photoemission including spin detection probes experimentally how the topological spin-polarized state emerges from the second bulk valence band. Moreover, we demonstrate the precise control of the Fermi level by dopants.

13.
Nat Commun ; 3: 1232, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23187632

RESUMO

Graphene in spintronics is predominantly considered for spin current leads of high performance due to weak intrinsic spin-orbit coupling of the graphene π electrons. Externally induced large spin-orbit coupling opens the possibility of using graphene in active elements of spintronic devices such as the Das-Datta spin field-effect transistor. Here we show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) of the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals the hybridization with Au 5d states as the source for this giant splitting. An ab initio model of the system shows a Rashba-split spectrum around the Dirac point of graphene. A sharp graphene-Au interface at the equilibrium distance accounts for only ~10 meV spin-orbit splitting and enhancement is due to the Au atoms in the hollow position that get closer to graphene and do not break the sublattice symmetry.

14.
J Phys Condens Matter ; 24(33): 335502, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22813539

RESUMO

We examined by low-energy electron diffraction and scanning tunneling microscopy the surface of thin Cu films on Pt(111). The Cu/Pt lattice mismatch induces a moiré modulation for films from 3 to about 10 ML thickness. We used angle-resolved photoemission spectroscopy to examine the effects of this structural modulation on the electronic states of the system. A series of hexagonal- and trigonal-like constant energy contours is found in the proximity of the Cu(111) zone boundaries. These electronic patterns are generated by Cu sp-quantum well state replicas, originating from multiple points of the reciprocal lattice associated with the moiré superstructure. Layer-dependent strain relaxation and hybridization with the substrate bands concur to determine the dispersion and energy position of the Cu Shockley surface state.

15.
Phys Rev Lett ; 108(6): 066804, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401103

RESUMO

We reveal a giant Rashba effect (α(R)≈1.3 eV Å) on a surface state of Ir(111) by angle-resolved photoemission and by density functional theory. It is demonstrated that the existence of the surface state, its spin polarization, and the size of its Rashba-type spin-orbit splitting remain unaffected when Ir is covered with graphene. The graphene protection is, in turn, sufficient for the spin-split surface state to survive in ambient atmosphere. We discuss this result along with indications for a topological protection of the surface state.

16.
Phys Rev Lett ; 105(7): 076804, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868068

RESUMO

Strong spin polarization of the photocurrent from bulk continuum states of Bi(111) is experimentally observed. On the basis of ab initio one-step photoemission theory the effect is shown to originate from the strong polarization of the initial states at the surface and to be the result of the surface sensitivity of photoemission. Final state effects cause deviations of the k{∥} dependence of polarization from strictly antisymmetric relative to Γ.

17.
Phys Rev Lett ; 104(6): 066802, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366845

RESUMO

We report on the observation of a giant spin-orbit splitting of quantum-well states in the unoccupied electronic structure of a Bi monolayer on Cu(111). Up to now, Rashba-type splittings of this size have been reported exclusively for surface states in a partial band gap. With these quantum-well states we have experimentally identified a second class of states that show a huge spin-orbit splitting. First-principles electronic structure calculations show that the origin of the spin-orbit splitting is due to the perpendicular potential at the surface and interface of the ultrathin Bi film. This finding allows for the direct possibility to tailor spin-orbit splitting by means of thin-film nanofabrication.

18.
Phys Rev Lett ; 102(13): 136807, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19392390

RESUMO

We report on ballistic electron emission microscopy and spectroscopy studies on epitaxial (3-5 nm thick) Bi(111) films, grown on n-type Si substrates. The effective barrier heights of the Schottky barrier observed are 0.58 eV for the Bi/Si(100)-(2x1) and 0.68 eV for the Bi/Si(111)-(7x7). At the step edges of the epitaxial films a strong increase of the ballistic electron emission microscopy current is observed for Bi/Si(111)-(7x7), while no increase occurs for Bi/Si(100)-(2x1). These observations can be explained by the conservation of the lateral momentum of the electron at the metal-semiconductor interface.

19.
Science ; 323(5916): 919-22, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19213915

RESUMO

A topologically ordered material is characterized by a rare quantum organization of electrons that evades the conventional spontaneously broken symmetry-based classification of condensed matter. Exotic spin-transport phenomena, such as the dissipationless quantum spin Hall effect, have been speculated to originate from a topological order whose identification requires a spin-sensitive measurement, which does not exist to this date in any system. Using Mott polarimetry, we probed the spin degrees of freedom and demonstrated that topological quantum numbers are completely determined from spin texture-imaging measurements. Applying this method to Sb and Bi(1-x)Sb(x), we identified the origin of its topological order and unusual chiral properties. These results taken together constitute the first observation of surface electrons collectively carrying a topological quantum Berry's phase and definite spin chirality, which are the key electronic properties component for realizing topological quantum computing bits with intrinsic spin Hall-like topological phenomena.

20.
Phys Rev Lett ; 101(2): 027201, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18764220

RESUMO

Using spin-polarized scanning tunneling microscopy we show that the magnetic order of 1 monolayer Mn on W(001) is a spin spiral propagating along 110 crystallographic directions. The spiral arises on the atomic scale with a period of about 2.2 nm, equivalent to only 10 atomic rows. Ab initio calculations identify the spin spiral as a left-handed cycloid stabilized by the Dzyaloshinskii-Moriya interaction, imposed by spin-orbit coupling, in the presence of softened ferromagnetic exchange coupling. Monte Carlo simulations explain the formation of a nanoscale labyrinth pattern, originating from the coexistence of the two possible rotational domains, that is intrinsic to the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA