Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 221, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620172

RESUMO

BACKGROUND: Skin-penetrating nematodes of the genus Strongyloides infect over 600 million people, posing a major global health burden. Their life cycle includes both a parasitic and free-living generation. During the parasitic generation, infective third-stage larvae (iL3s) actively engage in host seeking. During the free-living generation, the nematodes develop and reproduce on host feces. At different points during their life cycle, Strongyloides species encounter a wide variety of host-associated and environmental bacteria. However, the microbiome associated with Strongyloides species, and the behavioral and physiological interactions between Strongyloides species and bacteria, remain unclear. RESULTS: We first investigated the microbiome of the human parasite Strongyloides stercoralis using 16S-based amplicon sequencing. We found that S. stercoralis free-living adults have an associated microbiome consisting of specific fecal bacteria. We then investigated the behavioral responses of S. stercoralis and the closely related rat parasite Strongyloides ratti to an ecologically diverse panel of bacteria. We found that S. stercoralis and S. ratti showed similar responses to bacteria. The responses of both nematodes to bacteria varied dramatically across life stages: free-living adults were strongly attracted to most of the bacteria tested, while iL3s were attracted specifically to a narrow range of environmental bacteria. The behavioral responses to bacteria were dynamic, consisting of distinct short- and long-term behaviors. Finally, a comparison of the growth and reproduction of S. stercoralis free-living adults on different bacteria revealed that the bacterium Proteus mirabilis inhibits S. stercoralis egg hatching, and thereby greatly decreases parasite viability. CONCLUSIONS: Skin-penetrating nematodes encounter bacteria from various ecological niches throughout their life cycle. Our results demonstrate that bacteria function as key chemosensory cues for directing parasite movement in a life-stage-specific manner. Some bacterial genera may form essential associations with the nematodes, while others are detrimental and serve as a potential source of novel nematicides.


Assuntos
Nematoides , Animais , Bactérias , Larva , Estágios do Ciclo de Vida , Ratos , Pele , Strongyloides ratti , Strongyloides stercoralis
2.
Proc Natl Acad Sci U S A ; 117(30): 17913-17923, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651273

RESUMO

Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.


Assuntos
Células Quimiorreceptoras/fisiologia , Interações Hospedeiro-Parasita , Nematoides/fisiologia , Infecções por Nematoides/etiologia , Pele/parasitologia , Animais , Comportamento Animal , Dióxido de Carbono , Humanos , Estágios do Ciclo de Vida , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Strongyloides stercoralis/patogenicidade , Strongyloides stercoralis/fisiologia , Temperatura
3.
PLoS Genet ; 14(3): e1007209, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29513658

RESUMO

The double bromodomain and extra-terminal domain (BET) proteins are critical epigenetic readers that bind to acetylated histones in chromatin and regulate transcriptional activity and modulate changes in chromatin structure and organization. The testis-specific BET member, BRDT, is essential for the normal progression of spermatogenesis as mutations in the Brdt gene result in complete male sterility. Although BRDT is expressed in both spermatocytes and spermatids, loss of the first bromodomain of BRDT leads to severe defects in spermiogenesis without overtly compromising meiosis. In contrast, complete loss of BRDT blocks the progression of spermatocytes into the first meiotic division, resulting in a complete absence of post-meiotic cells. Although BRDT has been implicated in chromatin remodeling and mRNA processing during spermiogenesis, little is known about its role in meiotic processes. Here we report that BRDT is an essential regulator of chromatin organization and reprograming during prophase I of meiosis. Loss of BRDT function disrupts the epigenetic state of the meiotic sex chromosome inactivation in spermatocytes, affecting the synapsis and silencing of the X and Y chromosomes. We also found that BRDT controls the global chromatin organization and histone modifications of the chromatin attached to the synaptonemal complex. Furthermore, the homeostasis of crossover formation and localization during pachynema was altered, underlining a possible epigenetic mechanism by which crossovers are regulated and differentially established in mammalian male genomes. Our observations reveal novel findings about the function of BRDT in meiosis and provide insight into how epigenetic regulators modulate the progression of male mammalian meiosis and the formation of haploid gametes.


Assuntos
Cromatina/genética , Epigênese Genética/genética , Meiose/fisiologia , Proteínas Nucleares/genética , Cromossomos Sexuais/genética , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Pareamento Cromossômico/genética , Troca Genética , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Infertilidade Masculina/genética , Masculino , Camundongos Knockout , Proteínas Nucleares/metabolismo , Espermatócitos/patologia , Espermatócitos/fisiologia , Testículo/citologia , Testículo/fisiologia
4.
PLoS Biol ; 16(2): e2003885, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29408891

RESUMO

T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis-host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking "bites" of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target.


Assuntos
Neutrófilos/imunologia , Fagocitose , Trichomonas vaginalis/imunologia , Animais , Sangue , Relação Dose-Resposta Imunológica , Armadilhas Extracelulares/imunologia , Interações entre Hospedeiro e Microrganismos , Humanos , Serina Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA