RESUMO
INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be spread by individuals unaware they are infected. Such dissemination has heightened ramifications in cancer patients, who may need to visit healthcare facilities frequently, be exposed to immune-compromising therapies, and face greater morbidity from coronavirus disease 2019 (COVID-19). We determined characteristics of (1) asymptomatic, clinically diagnosed, and (2) serologically documented but clinically undiagnosed SARS-CoV-2 infection among individuals with lung cancer. PATIENTS AND METHODS: In a multicenter registry, individuals with lung cancer (regardless of prior SARS-CoV-2 vaccination or documented infection) underwent collection of clinical data and serial blood samples, which were tested for antinucleocapsid protein antibody (anti-N Ab) or IgG (N) levels. We used multivariable logistic regression models to investigate clinical characteristics associated with the presence or absence of symptoms and the presence or absence of a clinical diagnosis among patients with their first SARS-CoV-2 infection. RESULTS: Among patients with serologic evidence or clinically documented SARS-CoV-2 infection, 80/142 (56%) had no reported symptoms at their first infection, and 61/149 (40%) were never diagnosed. Asymptomatic infection was more common among older individuals and earlier-stage lung cancer. In multivariable analysis, non-white individuals with SARS-CoV-2 serologic positivity were 70% less likely ever to be clinically diagnosed (P = .002). CONCLUSIONS: In a multicenter lung cancer population, a substantial proportion of SARS-CoV-2 infections had no associated symptoms or were never clinically diagnosed. Because such cases appear to occur more frequently in populations that may face greater COVID-19-associated morbidity, measures to limit disease spread and severity remain critical.
RESUMO
In patients with lung cancer (LC), understanding factors that impact the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) anti-spike antibody (SAb) titers over time is critical, but challenging, due to evolving treatments, infections, vaccinations, and health status. The objective was to develop a time-dependent regression model elucidating individual contributions of factors influencing SAb levels in LC patients using a prospective, longitudinal, multi-institutional cohort study initiated in January 2021. The study evaluated 296 LC patients-median age 69; 55% female; 50% stage IV. Blood samples were collected every three months to measure SAb levels using FDA-approved ELISA. Asymptomatic and unreported infections were documented through measurement of anti-nucleocapsid Ab levels (Meso Scale Discovery). Associations between clinical characteristics and titers were evaluated using a time-dependent linear regression model with a generalized estimating equation (GEE), considering time-independent variables (age, sex, ethnicity, smoking history, histology, and stage) and time-dependent variables (booster vaccinations, SARS-CoV-2 infections, cancer treatment, steroid use, and influenza vaccination). Significant time-dependent effects increasing titer levels were observed for prior SARS-CoV-2 infection (p < 0.001) and vaccination/boosters (p < 0.001). Steroid use (p = 0.043) and chemotherapy (p = 0.033) reduced titer levels. Influenza vaccination was associated with increased SAb levels (p < 0.001), independent of SARS-CoV-2 vaccine boosters. Prior smoking significantly decreased titers in females (p = 0.001). Age showed no association with titers. This GEE-based linear regression model unveiled the nuanced impact of multiple variables on patient anti-spike Ab levels over time. After controlling for the major influences of vaccine and SARS-CoV-2 infections, chemotherapy and steroid use were found to have negatively affected titers. Smoking in females significantly decreased titers. Surprisingly, influenza vaccinations were also significantly associated, likely indirectly, with improved SARS-CoV-2 titers.
RESUMO
Sero-monitoring provides context to the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and changes in population immunity following vaccine introduction. Here, we describe results of a cross-sectional hospital-based study of anti-spike seroprevalence in New York City (NYC) from February 2020 to July 2022, and a follow-up period from August 2023 to October 2023. Samples from 55,092 individuals, spanning five epidemiological waves were analyzed. Prevalence ratios (PR) were obtained using Poisson regression. Anti-spike antibody levels increased gradually over the first two waves, with a sharp increase during the 3rd wave coinciding with SARS-CoV-2 vaccination in NYC resulting in seroprevalence levels >90% by July 2022. Our data provide insights into the dynamic changes in immunity occurring in a large and diverse metropolitan community faced with a new viral pathogen and reflects the patterns of antibody responses as the pandemic transitions into an endemic stage.
Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Cidade de Nova Iorque/epidemiologia , COVID-19/epidemiologia , COVID-19/imunologia , Estudos Soroepidemiológicos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Adulto Jovem , Adolescente , Glicoproteína da Espícula de Coronavírus/imunologia , Criança , Pandemias , Pré-Escolar , Lactente , Idoso de 80 Anos ou mais , Vacinas contra COVID-19/imunologiaRESUMO
Germinal centers (GC) are microanatomical lymphoid structures where affinity-matured memory B cells and long-lived bone marrow plasma cells are primarily generated. It is unclear how the maturation of B cells within the GC impacts the breadth and durability of B cell responses to influenza vaccination in humans. We used fine needle aspiration of draining lymph nodes to longitudinally track antigen-specific GC B cell responses to seasonal influenza vaccination. Antigen-specific GC B cells persisted for at least 13 wk after vaccination in two out of seven individuals. Monoclonal antibodies (mAbs) derived from persisting GC B cell clones exhibit enhanced binding affinity and breadth to influenza hemagglutinin (HA) antigens compared with related GC clonotypes isolated earlier in the response. Structural studies of early and late GC-derived mAbs from one clonal lineage in complex with H1 and H5 HAs revealed an altered binding footprint. Our study shows that inducing sustained GC reactions after influenza vaccination in humans supports the maturation of responding B cells.
Assuntos
Linfócitos B , Centro Germinativo , Vacinas contra Influenza , Vacinação , Centro Germinativo/imunologia , Humanos , Vacinas contra Influenza/imunologia , Linfócitos B/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Anticorpos Antivirais/imunologia , Anticorpos Monoclonais/imunologia , Adulto , Feminino , Masculino , Pessoa de Meia-IdadeRESUMO
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Testes de Neutralização , SARS-CoV-2 , Animais , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/sangue , COVID-19/virologia , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Cricetinae , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de DoençasRESUMO
Post vaccine immunity following COVID-19 mRNA vaccination may be driven by extrinsic, or controllable and intrinsic, or inherent health factors. Thus, we investigated the effects of extrinsic and intrinsic on the peak antibody response following COVID-19 primary vaccination and on the trajectory of peak antibody magnitude and durability over time. Participants in a longitudinal cohort attended visits every 3 months for up to 2 years following enrollment. At baseline, participants provided information on their demographics, recreational behaviors, and comorbid health conditions which guided our model selection process. Blood samples were collected for serum processing and spike antibody testing at each visit. Cross-sectional and longitudinal models (linear-mixed effects models) were generated to assess the relationship between selected intrinsic and extrinsic health factors on peak antibody following vaccination and to determine the influence of these predictors on antibody over time. Following cross-sectional analysis, we observed higher peak antibody titers after primary vaccination in females, those who reported recreational drug use, younger age, and prior COVID-19 history. Following booster vaccination, females and Hispanics had higher peak titers after the 3rd and 4th doses, respectively. Longitudinal models demonstrated that Moderna mRNA-1273 recipients, females, and those previously vaccinated had increased peak titers over time. Moreover, drug users and half-dose Moderna mRNA-1273 recipients had higher peak antibody titers over time following the first booster, while no predictive factors significantly affected post-second booster antibody responses. Overall, both intrinsic and extrinsic health factors play a significant role in shaping humoral immunogenicity after initial vaccination and the first booster. The absence of predictive factors for second booster immunogenicity suggests a more robust and consistent immune response after the second booster vaccine administration.
Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , Formação de Anticorpos , COVID-19/prevenção & controle , Vacina de mRNA-1273 contra 2019-nCoV , Estudos Transversais , Anticorpos , Vacinação , Anticorpos AntiviraisRESUMO
Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.
Assuntos
Quirópteros , Furões , Vírus da Influenza A Subtipo H9N2 , Infecções por Orthomyxoviridae , Replicação Viral , Animais , Furões/virologia , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/fisiologia , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Quirópteros/virologia , Humanos , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Camundongos , Filogenia , Influenza Humana/transmissão , Influenza Humana/virologia , Pulmão/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangueRESUMO
Associations between antenatal SARS-CoV-2 infection and pregnancy outcomes have been conflicting and the role of the immune system is currently unclear. This prospective cohort study investigated the interaction of antenatal SARS-CoV-2 infection, changes in cytokine and HS-CRP levels, birthweight and gestational age at birth. 2352 pregnant participants from New York City (2020-2022) were included. Plasma levels of interleukin (IL)-1ß, IL-6, IL-17A and high-sensitivity C-reactive protein (HS-CRP) were quantified in blood specimens obtained across pregnancy. Quantile and linear regression models were conducted to 1) assess the impact of antenatal SARS-CoV-2 infection, overall and by timing of detection of SARS-CoV-2 positivity (< 20 weeks versus ≥ 20 weeks), on birthweight and gestational age at delivery; 2) examine the relationship between SARS-CoV-2 infection and maternal immune changes during pregnancy. All models were adjusted for maternal demographic and obstetric factors and pandemic timing. Birthweight models were additionally adjusted for gestational age at delivery and fetal sex. Immune marker models were also adjusted for gestational age at specimen collection and multiplex assay batch. 371 (15.8%) participants were infected with SARS-CoV-2 during pregnancy, of which 98 (26.4%) were infected at < 20 weeks gestation. Neither SARS-CoV-2 infection in general nor in early or late pregnancy was associated with lower birthweight nor earlier gestational age at delivery. Further, we did not observe cytokine or HS-CRP changes in response to SARS-CoV-2 infection and thus found no evidence to support a potential association between immune dysregulation and the diversity in pregnancy outcomes following infection.
Assuntos
Peso ao Nascer , COVID-19 , Inflamação , Complicações Infecciosas na Gravidez , Resultado da Gravidez , SARS-CoV-2 , Humanos , Gravidez , Feminino , COVID-19/imunologia , COVID-19/sangue , Adulto , Estudos Prospectivos , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/imunologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/virologia , Inflamação/imunologia , Inflamação/sangue , Proteína C-Reativa/análise , Proteína C-Reativa/metabolismo , Idade Gestacional , Recém-Nascido , Citocinas/sangueRESUMO
Subvariants of the Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) efficiently escape neutralizing antibody responses induced by both vaccination and infection with antigenically distinct variants. Here, we describe the potency and breadth of neutralizing and binding antibody responses against a large panel of variants following an Omicron BA.1 or BA.2 breakthrough infection in a heterogeneous cohort of individuals with diverse exposure histories. Both BA.1 and BA.2 breakthrough infections significantly boost antibody levels and broaden antibody reactivity. However, this broader immunity induced by BA.1 and BA.2 breakthrough infections does not neutralize Omicron BQ and XBB subvariants efficiently. While these subvariants are not neutralized well by post-breakthrough sera, suggesting escape, binding non-neutralizing antibody responses are sustained. In summary, our data suggest that while BA.1 and BA.2 breakthrough infections broaden the immune response to SARS-CoV-2 spike, the induced neutralizing antibody response is still outpaced by viral evolution.
Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Infecções Irruptivas , SARS-CoV-2 , Anticorpos NeutralizantesRESUMO
Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
RESUMO
It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.
Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinação , Imunização Secundária , Vacinas de mRNA , Anticorpos AntiviraisRESUMO
OBJECTIVE: The effect of stress on vaccine-induced humoral immunity and therapeutic interventions to mitigate pandemic-related stress remain underexplored. METHOD: Participants in a longitudinal cohort study ( n = 189) completed a validated measure, GAD-7, and 10-instrument stress measure to assess stress and anxiety after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Serum was collected to obtain SARS-CoV-2 antibody titer levels. RESULTS: Participants experienced increased stress due to the SARS-CoV-2 pandemic with a positive correlation between GAD-7 scores and peak antibody titers overall; however, there was a negative association with scores commensurate with severe anxiety. Health care workers and younger participants were more significantly affected by anxiety. CONCLUSIONS: Mild anxiety levels may have immune-enhancing effects, whereas severe anxiety may cause antibody generation reduction. Mental health-focused interventions are imperative for younger adults and health care workers. Young adults may be more resilient to increased stress levels.
Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Imunidade Humoral , Estudos Longitudinais , Pandemias , COVID-19/epidemiologia , Ansiedade , Pessoal de Saúde , VacinaçãoRESUMO
IMPORTANCE: As demonstrated by severe acute respiratory syndrome coronavirus 2, coronaviruses pose a significant pandemic threat. Here, we show that coronavirus disease 2019 mRNA vaccination can induce significant levels of cross-reactive antibodies against diverse coronavirus spike proteins. While these antibodies are binding antibodies that likely have little neutralization capacity and while their contribution to cross-protection is unclear, it is possible that they may play a role in protection from progression to severe disease with novel coronaviruses.
Assuntos
COVID-19 , Humanos , Prevalência , SARS-CoV-2/genética , Reações Cruzadas , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
IMPORTANCE: Antibodies on mucosal surfaces of the upper respiratory tract have been shown to be important for protection from infection with SARS-CoV-2. Here we investigate the induction of serum IgG, saliva IgG, and saliva sIgA after COVID-19 mRNA booster vaccination or breakthrough infections.
RESUMO
Patients diagnosed with lung cancer (LC) exhibit increased susceptibility to SARS-CoV-2 infection. Rodilla et al. monitor the levels of plasma anti-nucleocapsid antibodies within a cohort of fully vaccinated LC patients and reveal that the actual infection rate is nearly twice the documented rate, indicating a significant prevalence of unreported cases.
Assuntos
COVID-19 , Neoplasias Pulmonares , Humanos , SARS-CoV-2 , Nucleocapsídeo , Testes Imunológicos , Teste para COVID-19RESUMO
The antigenic evolution of SARS-CoV-2 requires ongoing monitoring to judge the immune escape of newly arising variants. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal sera. We compared 18 datasets generated using human, hamster, and mouse sera, and six different neutralization assays. Titer magnitude was lowest in human, intermediate in hamster, and highest in mouse sera. Fold change, immunodominance patterns and antigenic maps were similar among sera. Most assays yielded similar results, except for differences in fold change in cytopathic effect assays. Not enough data was available for conclusively judging mouse sera, but hamster sera were a consistent surrogate for human first-infection sera.
RESUMO
Seasonal influenza viruses account for 1 billion infections worldwide every year, including 3-5 million cases of severe illness and up to 650,000 deaths. The effectiveness of current influenza virus vaccines is variable and relies on the immunodominant hemagglutinin (HA) and to a lesser extent on the neuraminidase (NA), the viral surface glycoproteins. Efficient vaccines that refocus the immune response to conserved epitopes on the HA are needed to tackle infections by influenza virus variants. Sequential vaccination with chimeric HA (cHA) and mosaic HA (mHA) constructs has proven to induce immune responses to the HA stalk domain and conserved epitopes on the HA head. In this study, we developed a bioprocess to manufacture cHA and mHA inactivated split vaccines and a method to quantify HA with a prefusion stalk based on a sandwich enzyme-linked immunosorbent assay. Virus inactivation with beta-propiolactone (ßPL) and splitting with Triton X-100 yielded the highest amount of prefusion HA and enzymatically active NA. In addition, the quantity of residual Triton X-100 and ovalbumin (OVA) was reduced to very low levels in the final vaccine preparations. The bioprocess shown here provides the basis to manufacture inactivated split cHA and mHA vaccines for pre-clinical research and future clinical trials in humans, and can also be applied to produce vaccines based on other influenza viruses.
RESUMO
Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have been reported in immune-compromised individuals and people undergoing immune-modulatory treatments. Although intrahost evolution has been documented, direct evidence of subsequent transmission and continued stepwise adaptation is lacking. Here we describe sequential persistent SARS-CoV-2 infections in three individuals that led to the emergence, forward transmission, and continued evolution of a new Omicron sublineage, BA.1.23, over an eight-month period. The initially transmitted BA.1.23 variant encoded seven additional amino acid substitutions within the spike protein (E96D, R346T, L455W, K458M, A484V, H681R, A688V), and displayed substantial resistance to neutralization by sera from boosted and/or Omicron BA.1-infected study participants. Subsequent continued BA.1.23 replication resulted in additional substitutions in the spike protein (S254F, N448S, F456L, M458K, F981L, S982L) as well as in five other virus proteins. Our findings demonstrate not only that the Omicron BA.1 lineage can diverge further from its already exceptionally mutated genome but also that patients with persistent infections can transmit these viral variants. Thus, there is, an urgent need to implement strategies to prevent prolonged SARS-CoV-2 replication and to limit the spread of newly emerging, neutralization-resistant variants in vulnerable patients.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Aclimatação , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
There is still a need for safe, efficient, and low-cost coronavirus disease 2019 (COVID-19) vaccines that can stop transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we evaluated a vaccine candidate based on a live recombinant Newcastle disease virus (NDV) that expresses a stable version of the spike protein in infected cells as well as on the surface of the viral particle (AVX/COVID-12-HEXAPRO, also known as NDV-HXP-S). This vaccine candidate can be grown in embryonated eggs at a low cost, similar to influenza virus vaccines, and it can also be administered intranasally, potentially to induce mucosal immunity. We evaluated this vaccine candidate in prime-boost regimens via intramuscular, intranasal, or intranasal followed by intramuscular routes in an open-label non-randomized non-placebo-controlled phase I clinical trial in Mexico in 91 volunteers. The primary objective of the trial was to assess vaccine safety, and the secondary objective was to determine the immunogenicity of the different vaccine regimens. In the interim analysis reported here, the vaccine was found to be safe, and the higher doses tested were found to be immunogenic when given intramuscularly or intranasally followed by intramuscular administration, providing the basis for further clinical development of the vaccine candidate. The study is registered under ClinicalTrials.gov identifier NCT04871737.