Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370516

RESUMO

Haemosporidian parasites are vector-borne parasites infecting terrestrial vertebrates as well as avian species, such as the White-breasted Waterhen, a Gruiformes waterbird found in lowlands near wetlands and distributed throughout Thailand. However, information regarding haemosporidia infection in this species is lacking. To establish regional information, 17 blood samples were collected from White-breasted Waterhens. Four haemoparasite lineages were identified in six blood samples: Haemoproteus gallinulae, Plasmodium collidatum, Plasmodium elongatum, and an unidentified Plasmodium species. H. gallinulae was characterized with morphological features in White-breasted Waterhens for the first time; the morphological characteristics were consistent with previous descriptions. H. gallinulae was more closely related to Haemoproteus species of Passeriformes birds than to those of Gruiformes birds. The Plasmodium parasites infecting these White-breasted Waterhens previously caused severe avian malaria in other host species. The unidentified Plasmodium species had rarely been documented, although it was reported in the Culex vector and was possibly associated with specialist parasites either as host or habitat. Our findings reveal multiple haemosporidian species reflecting the role of this avian host as a carrier of haemosporidians. This study offers species records and molecular materials that may provide critical information for further targeted research into these haemosporidia.

2.
Sci Rep ; 13(1): 397, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624135

RESUMO

The highly acid sulfate Rangsit soil series of Rangsit, Pathum-Thani district, Thailand poses a major problem for agriculture in the area. Water hyacinth is a naturally occurring weed that can grow aggressively, causing eutrophication and leading to many severe environmental impacts. Here, through the pyrolysis process, we convert water hyacinth to biochar and use it for acid soil amendment. We found the ratio between biochar, soil, and sand suitable for the cultivation of water convolvulus to be 50 g of biochar, 400 g of soil, and 100 g of sand (1:8:2). This soil mixture improved the pH of the soil from 4.73 to 7.57. The plant height of the water convolvulus grown in the soil mixture was the greatest at 20.45 cm and the plant weight with and without roots was greatest at 2.23 g and 2.52 g, respectively. Moreover, we demonstrated the dominance and high abundance of Bacillus among the community in soil with biochar amendment. Here we provide the first assessment of the appropriate amount of water hyacinth-derived biochar for mitigation of soil acidity and promotion of optimal water convolvulus growth. Moreover, biochar can optimally modify soil bacterial communities that benefit plant development.


Assuntos
Eichhornia , Solo , Areia , Carvão Vegetal , Concentração de Íons de Hidrogênio
3.
Virus Res ; 323: 199009, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414188

RESUMO

Influenza A virus (IAV) infection in pregnant women is a major public health concern. However, the effect of IAV infection on human embryogenesis is still unclear. Here we show that human induced pluripotent stem cells (hiPSCs) and hiPSC-derived ectodermal, mesodermal and endodermal cells are susceptible to IAV infection. These cell types stained positive for α2,6-linked sialic acid, the receptor for IAV infection expressed on the cell surface. While hiPSCs produced high viral titers for up to 7 days with increasing infected cell number suggesting that the viral progenies produced from hiPSCs without exogenous protease were infectious and could spread to other cells, the three germ-layer cells showed a decline in viral titers suggesting the lack of viral spreading. Amongst the three germ layers, endodermal cells were less susceptible than ectodermal and mesodermal cells. These results indicate the permissiveness of cells of early embryogenesis, and suggest a risk of detrimental effects of IAV infection in early human embryonic development.

4.
In Vitro Cell Dev Biol Anim ; 58(3): 232-242, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235152

RESUMO

Domestic pigs have become increasingly popular as a model for human diseases such as neurological diseases. Drug discovery platforms have increasingly been used to identify novel compounds that combat neurodegeneration. Currently, bioactive molecules such as melatonin have been demonstrated to offer a neuroprotective effect in several studies. However, a neurodegenerative platform to study novel compounds in a porcine model has not been fully established. In this study, characterized porcine induced neural stem cells (iNSCs) were used for evaluation of the protective effect of melatonin against chemical and pathogenic stimulation. First, the effects of different concentrations of melatonin on the proliferation of porcine iNSCs were studied. Second, porcine iNSCs were treated with the appropriate concentration of melatonin prior to induced degeneration with dimethyl sulfoxide or Zika virus (ZIKV). The results demonstrated that the percentages of Ki67 expression in porcine iNSCs cultured in 0.1, 1, and 10 nM melatonin were not significantly different from that in the control groups. Melatonin at 1 nM protected porcine iNSCs from DMSO-induced degeneration, as confirmed by a dead cell exclusion assay and mitochondrial membrane potential (ΔΨm) analysis. In addition, pretreatment with melatonin reduced the percentage of dead porcine iNSCs after ZIKV infection. Melatonin increased the ΔΨm, resulting in a decrease in cell degeneration. However, pretreatment with melatonin was unable to suppress ZIKV replication in porcine iNSCs. In conclusion, the present study demonstrated the anti-degenerative effect of melatonin against DMSO- and ZIKV-induced degeneration in porcine iNSCs.


Assuntos
Melatonina , Células-Tronco Neurais , Doenças dos Suínos , Infecção por Zika virus , Zika virus , Animais , Dimetil Sulfóxido/farmacologia , Melatonina/farmacologia , Suínos , Replicação Viral
5.
Front Cell Dev Biol ; 9: 709286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354993

RESUMO

Porcine species have been used in preclinical transplantation models for assessing the efficiency and safety of transplants before their application in human trials. Porcine-induced pluripotent stem cells (piPSCs) are traditionally established using four transcription factors (4TF): OCT4, SOX2, KLF4, and C-MYC. However, the inefficiencies in the reprogramming of piPSCs and the maintenance of their self-renewal and pluripotency remain challenges to be resolved. LIN28 was demonstrated to play a vital role in the induction of pluripotency in humans. To investigate whether this factor is similarly required by piPSCs, the effects of adding LIN28 to the 4TF induction method (5F approach) on the efficiency of piPSC reprogramming and maintenance of self-renewal and pluripotency were examined. Using a retroviral vector, porcine fetal fibroblasts were transfected with human OCT4, SOX2, KLF4, and C-MYC with or without LIN28. The colony morphology and chromosomal stability of these piPSC lines were examined and their pluripotency properties were characterized by investigating both their expression of pluripotency-associated genes and proteins and in vitro and in vivo differentiation capabilities. Alkaline phosphatase assay revealed the reprogramming efficiencies to be 0.33 and 0.17% for the 4TF and 5TF approaches, respectively, but the maintenance of self-renewal and pluripotency until passage 40 was 6.67 and 100%, respectively. Most of the 4TF-piPSC colonies were flat in shape, showed weak positivity for alkaline phosphatase, and expressed a significantly high level of SSEA-4 protein, except for one cell line (VSMUi001-A) whose properties were similar to those of the 5TF-piPSCs; that is, tightly packed and dome-like in shape, markedly positive for alkaline phosphatase, and expressing endogenous pluripotency genes (pOCT4, pSOX2, pNANOG, and pLIN28), significantly high levels of pluripotent proteins (OCT4, SOX2, NANOG, LIN28, and SSEA-1), and a significantly low level of SSEA-4 protein. VSMUi001-A and all 5F-piPSC lines formed embryoid bodies, underwent spontaneous cardiogenic differentiation with cardiac beating, expressed cardiomyocyte markers, and developed teratomas. In conclusion, in addition to the 4TF, LIN28 is required for the effective induction of piPSCs and the maintenance of their long-term self-renewal and pluripotency toward the development of all germ layers. These piPSCs have the potential applicability for veterinary science.

6.
Virus Res ; 292: 198252, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33290792

RESUMO

Tembusu virus (TMUV) causes disease in poultry, especially in ducks, resulting in abnormality in egg production and with high morbidity and mortality, resulting in great loss in duck farming industry in China and Southeast Asia. Previous studies on the pathogenesis of TMUV infection have been mostly conducted in poultry, with a few studies being undertaken in mice. While TMUV does not cause disease in humans, it has been reported that antibodies against TMUV have been found in serum samples from duck farmers, and thus data on TMUV infection in humans is limited, and the pathogenesis is unclear. In this study we investigated the cell tropism and potential susceptibility of humans to TMUV using several human cell lines. The results showed that human nerve and liver cell lines were both highly susceptible and permissive, while human kidney cells were susceptible and permissive, albeit to a lower degree. In addition, human muscle cells, lung epithelial cells, B-cells, T-cells and monocytic cells were largely refractory to TMUV infection. This data suggests that liver, neuron and kidney are potential target organs during TMUV infection in humans, consistent with what has been found in animal studies.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Hepatócitos/virologia , Células-Tronco Pluripotentes Induzidas/virologia , Linhagem Celular , China , Flavivirus/genética , Humanos , Rim/virologia , Fígado/virologia , Monócitos/virologia , Tropismo Viral
7.
Front Vet Sci ; 8: 806785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35097051

RESUMO

The reprogramming of cells into induced neural stem cells (iNSCs), which are faster and safer to generate than induced pluripotent stem cells, holds tremendous promise for fundamental and frontier research, as well as personalized cell-based therapies for neurological diseases. However, reprogramming cells with viral vectors increases the risk of tumor development due to vector and transgene integration in the host cell genome. To circumvent this issue, the Sendai virus (SeV) provides an alternative integration-free reprogramming method that removes the danger of genetic alterations and enhances the prospects of iNSCs from bench to bedside. Since pigs are among the most successful large animal models in biomedical research, porcine iNSCs (piNSCs) may serve as a disease model for both veterinary and human medicine. Here, we report the successful generation of piNSC lines from pig fibroblasts by employing the SeV. These piNSCs can be expanded for up to 40 passages in a monolayer culture and produce neurospheres in a suspension culture. These piNSCs express high levels of NSC markers (PAX6, SOX2, NESTIN, and VIMENTIN) and proliferation markers (KI67) using quantitative immunostaining and western blot analysis. Furthermore, piNSCs are multipotent, as they are capable of producing neurons and glia, as demonstrated by their expressions of TUJ1, MAP2, TH, MBP, and GFAP proteins. During the reprogramming of piNSCs with the SeV, no induced pluripotent stem cells developed, and the established piNSCs did not express OCT4, NANOG, and SSEA1. Hence, the use of the SeV can reprogram porcine somatic cells without first going through an intermediate pluripotent state. Our research produced piNSCs using SeV methods in novel, easily accessible large animal cell culture models for evaluating the efficacy of iNSC-based clinical translation in human medicine. Additionally, our piNSCs are potentially applicable in disease modeling in pigs and regenerative therapies in veterinary medicine.

8.
Stem Cell Res ; 24: 21-24, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29034889

RESUMO

Pig induced pluripotent stem cell (piPSC) line was generated from embryonic fibroblast cells using retroviral transduction approaches carrying human transcriptional factors: OCT4, SOX2, KLF4, c-MYC and LIN28. The generated piPSC line, VSMUi001-D, was positive for alkaline phosphatase activity and expressed the pluripotency associated transcription factors including OCT4, SOX2, NANOG and surface markers SSEA-1, all iPSC hallmarks of authenticity. Furthermore, VSMUi001-D exhibited a normal karyotype and formed embryoid bodies in vitro and teratomas in vivo. Upon cardiac differentiation, VSMUi001-D displayed spontaneous beating and expressed cardiomyocyte markers, like cardiac Troponin T.


Assuntos
Reprogramação Celular/genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Proteínas de Ligação a RNA/metabolismo , Suínos , Transfecção
9.
PLoS One ; 11(4): e0153183, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054879

RESUMO

Influenza neuraminidase (NA) proteins expressed in TK- cells infected with recombinant vaccinia virus carrying NA gene of highly pathogenic avian influenza H5N1 virus or 2009 pandemic H1N1 (H1N1pdm) virus were characterized for their biological properties, i.e., cell localization, molecular weight (MW), glycosylation and sialidase activity. Immune sera collected from BALB/c mice immunized with these recombinant viruses were assayed for binding and functional activities of anti-NA antibodies. Recombinant NA proteins were found localized in cytoplasm and cytoplasmic membrane of the infected cells. H1N1pdm NA protein had MW at about 75 kDa while it was 55 kDa for H5N1 NA protein. Hyperglycosylation was more pronounced in H1N1pdm NA compared to H5N1 NA according to N-glycosidase F treatment. Three dimensional structures also predicted that H1N1 NA globular head contained 4 and that of H5N1 contained 2 potential glycosylation sites. H5N1 NA protein had higher sialidase activity than H1N1pdm NA protein as measured by both MUNANA-based assay and fetuin-based enzyme-linked lectin assay (ELLA). Plaque reduction assay demonstrated that anti-NA antibody could reduce number of plaques and plaque size through inhibiting virus release, not virus entry. Assay for neuraminidase-inhibition (NI) antibody by ELLA showed specific and cross reactivity between H5N1 NA and H1N1pdm NA protein derived from reverse genetic viruses or wild type viruses. In contrast, replication-inhibition assay in MDCK cells showed that anti-H1N1 NA antibody moderately inhibited viruses with homologous NA gene only, while anti-H5N1 NA antibody modestly inhibited the replication of viruses containing homologous NA gene and NA gene derived from H1N1pdm virus. Anti-H1N1 NA antibody showed higher titers of inhibiting virus replication than anti-H5N1 NA antibody, which are consistent with the results on reduction in plaque numbers and sizes as well as in inhibiting NA enzymatic activity. No assay showed cross reactivity with reassorted PR8 (H1N1) virus and H3N2 wild type viruses.


Assuntos
Anticorpos Antivirais/sangue , Bioensaio , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas Virais/imunologia , Animais , Formação de Anticorpos , Western Blotting , Reações Cruzadas , Modelos Animais de Doenças , Cães , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Vetores Genéticos , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Soros Imunes , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/enzimologia , Virus da Influenza A Subtipo H5N1/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Replicação Viral
10.
J Virol ; 90(9): 4637-4646, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912622

RESUMO

UNLABELLED: Human bronchoalveolar fluid is known to have anti-influenza activity. It is believed to be a frontline innate defense against the virus. Several antiviral factors, including surfactant protein D, are believed to contribute to the activity. The 2009 pandemic H1N1 influenza virus was previously shown to be less sensitive to surfactant protein D. Nevertheless, whether different influenza virus strains have different sensitivities to the overall anti-influenza activity of human bronchoalveolar fluid was not known. We compared the sensitivities of 2009 pandemic H1N1, seasonal H1N1, and seasonal H3N2 influenza virus strains to inhibition by human bronchoalveolar lavage (BAL) fluid. The pandemic and seasonal H1N1 strains showed lower sensitivity to human BAL fluid than the H3N2 strains. The BAL fluid anti-influenza activity could be enhanced by oseltamivir, indicating that the viral neuraminidase (NA) activity could provide resistance to the antiviral defense. In accordance with this finding, the BAL fluid anti-influenza activity was found to be sensitive to sialidase. The oseltamivir resistance mutation H275Y rendered the pandemic H1N1 virus but not the seasonal H1N1 virus more sensitive to BAL fluid. Since only the seasonal H1N1 but not the pandemic H1N1 had compensatory mutations that allowed oseltamivir-resistant strains to maintain NA enzymatic activity and transmission fitness, the resistance to BAL fluid of the drug-resistant seasonal H1N1 virus might play a role in viral fitness. IMPORTANCE: Human airway secretion contains anti-influenza activity. Different influenza strains may vary in their susceptibilities to this antiviral activity. Here we show that the 2009 pandemic and seasonal H1N1 influenza viruses were less sensitive to human bronchoalveolar lavage (BAL) fluid than H3N2 seasonal influenza virus. The resistance to the pulmonary innate antiviral activity of the pandemic virus was determined by its neuraminidase (NA) gene, and it was shown that the NA inhibitor resistance mutation H275Y abolished this resistance of the pandemic H1N1 but not the seasonal H1N1 virus, which had compensatory mutations that maintained the fitness of drug-resistant strains. Therefore, the innate respiratory tract defense may be a barrier against NA inhibitor-resistant mutants, and evasion of this defense may play a role in the emergence and spread of drug-resistant strains.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Resistência à Doença/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Neuraminidase/metabolismo , Proteínas Virais/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Farmacorresistência Viral , Feminino , Furões , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Oseltamivir/farmacologia , Carga Viral
11.
Arch Virol ; 160(2): 409-15, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25504159

RESUMO

N-linked glycosylation of the influenza virus hemagglutinin (HA) protein plays crucial roles in HA structure and function, evasion of neutralizing antibodies, and susceptibility to innate soluble antiviral factors. The N-linked glycosylation site at position 158 of highly pathogenic H5N1 virus was previously shown to affect viral receptor-binding preference. H5N1 viruses show heterogeneity with respect to the presence of this glycosylation site. Clade 1 viruses that caused outbreaks in Southeast Asia in 2004 contained this glycosylation site, while the site is absent in the more recent clade 2 viruses. Here, we show that elimination of this glycosylation site increases viral virulence in mice. The mutant lacking the glycosylation site at position 158 showed unaltered growth kinetics in vitro and a comparable level of sensitivity to a major antiviral protein found in respiratory secretions, surfactant protein D (SP-D).


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/virologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Animais , Cães , Feminino , Glicosilação , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Carga Viral , Fatores de Virulência/genética , Replicação Viral/fisiologia
12.
Arch Virol ; 158(6): 1151-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23307364

RESUMO

We have generated a temperature-sensitive (ts) mutant from a human isolate of the H5N1 avian influenza virus by classical adaptation in cell culture. After 20 passages at low temperature, the virus showed a ts phenotype. The ts mutant also showed an attenuated phenotype after nasal inoculation in mice. Using reverse genetics, we generated reassortants carrying individual genomic segments of the wild-type and mutant viruses in an A/Puerto Rico/8/34 background, and found that the nucleoprotein (NP) gene could confer the ts phenotype. This mutant NP contains a serine-to-asparagine mutation at position 314 (S314N). The mutant NP protein showed a defect in nuclear localization at high temperature in mammalian cells.


Assuntos
Substituição de Aminoácidos/genética , Virus da Influenza A Subtipo H5N1/genética , Proteínas de Ligação a RNA/genética , Proteínas do Core Viral/genética , Substituição de Aminoácidos/fisiologia , Animais , Asparagina , Clonagem Molecular , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo , Fenótipo , Serina , Temperatura
13.
Southeast Asian J Trop Med Public Health ; 44(5): 799-809, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24437315

RESUMO

This investigation detailed the clinical disease, gross and histologic lesions in juvenile openbill storks (Anastomus oscitans) intranasally inoculated with an avian influenza virus, A/chicken/Thailand/vsmu-3 (H5N1), which is highly pathogenic for chickens. High morbidity and mortality were observed in openbill storks inoculated with HPAI H5N1 virus. Gross lesions from infected birds were congestion and brain hemorrhage (10/20), pericardial effusions, pericarditis and focal necrosis of the cardiac muscle (2/20), pulmonary edema and pulmonary necrosis, serosanguineous fluid in the bronchis (16/20), liver congestion (6/20), bursitis (5/20), subcutaneous hemorrhages (2/20) and pinpoint proventiculus hemorrhage (2/20). Real time RT-PCR demonstrated the presence of viral RNA in organs associated with the lesions: brain, trachea, lungs, liver, spleen and intestines. Similar to viral genome detection, virus was also isolated from these vital organs. Antibodies to influenza virus detected with a hemagglutination inhibition test, were found only in the openbill storks who died 8 days post-inoculation.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária/fisiopatologia , Animais , Aves , Suscetibilidade a Doenças , Testes de Hemaglutinação , Humanos , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real
14.
PLoS One ; 6(8): e23103, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21826229

RESUMO

Highly pathogenic avian influenza virus (HPAIV) of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05) isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.


Assuntos
Columbidae/imunologia , Columbidae/virologia , Citocinas/metabolismo , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/imunologia , Influenza Aviária/virologia , Animais , Quimiocina CCL5/metabolismo , Columbidae/metabolismo , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/metabolismo , Interferon-alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Pulmão/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor 3 Toll-Like/metabolismo
15.
Virology ; 412(1): 9-18, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21251691

RESUMO

In Thailand, highly pathogenic avian influenza (HPAI) viruses of subtype H5N1 had been isolated from various wild birds during the HPAI outbreak in poultries. In this study, we examined the pathogenicity of two wild bird isolates (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05) in mice. They showed similar replication in several organs and lethal outcome. However, on day 3 post-infection, Pigeon04 induced mRNA expression of proinflammatory cytokines (IL6 and TNFα) and MIP-2, neutrophil chemoattractant, in the lungs, resulting in severe pneumonia that was accompanied by neutrophil infiltration. In contrast, on day 7 post-infection, T.sparrow05 induced the expression of several cytokines to a greater extent than Pigeon04; it also potently induced mRNA expression of several cytokines in brains of the infected mice that triggered frequent inflammatory events. In sum, our study demonstrated that two HPAI viruses induced different host responses, despite having similar replications, resulting in lethal outcome in mice.


Assuntos
Interações Hospedeiro-Patógeno , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Animais , Aves , Encéfalo/patologia , Encéfalo/virologia , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/mortalidade , RNA Viral/química , RNA Viral/genética , Análise de Sequência de DNA , Análise de Sobrevida , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA