Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EBioMedicine ; 105: 105185, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848648

RESUMO

BACKGROUND: In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS: The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS: NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION: We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING: This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.

3.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586014

RESUMO

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.

4.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416036

RESUMO

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Assuntos
Depsipeptídeos , Vírus da Influenza A Subtipo H1N1 , NF-kappa B , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Interleucina-6/farmacologia , Antivirais/farmacologia , Fatores Imunológicos/farmacologia , Citocinas/metabolismo , SARS-CoV-2/metabolismo
5.
J Leukoc Biol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289826

RESUMO

Eosinophils are a critical type of immune cell and central players in Type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically Type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses towards effective antiviral responses is through vaccination, where typically a Type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite pre-existing immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease (VAERD) upon natural respiratory syncytial virus (RSV) infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated RSV (FI-RSV). More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. Based on current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.

6.
PLoS Pathog ; 20(1): e1011805, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198521

RESUMO

Hybrid immunity (vaccination + natural infection) to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. The mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed for T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera, reflected by smaller antigenic cartography distances. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Vacina BNT162 , Infecções Irruptivas , COVID-19/prevenção & controle , Mesocricetus , Anticorpos Neutralizantes , Complicações Pós-Operatórias , RNA Mensageiro/genética , Imunidade , Anticorpos Antivirais , Vacinação
7.
Small ; 20(10): e2306892, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37867244

RESUMO

Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.


Assuntos
Lipossomos , Nanopartículas , Poli I-C , Glicoproteína da Espícula de Coronavírus , Receptor 3 Toll-Like , Animais , Camundongos , Humanos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Adjuvantes Imunológicos/farmacologia
8.
Res Sq ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077015

RESUMO

Rapid emergence of antigenic distinct SARS-CoV-2 variants implies a greater risk of reinfection as viruses can escape neutralizing antibodies induced by vaccination or previous viral exposure. Disease severity during COVID-19 depends on many variables such as age-related comorbidities, host immune status and genetic variation. The host immune response during infection with SARS-CoV-2 may contribute to disease severity, which can range from asymptomatic to severe with fatal outcome. Furthermore, the extent of host immune response activation may rely on underlying genetic predisposition for disease or protection. To address these questions, we performed immune profiling studies in mice with different genetic backgrounds - transgenic K18-hACE2 and wild-type 129S1 mice - subjected to reinfection with the severe disease-causing SARS-CoV-2 B.1.351 variant, 30 days after experimental milder BA.1 infection. BA.1 preinfection conferred protection against B.1.351-induced morbidity in K18-hACE2 mice but aggravated disease in 129S1 mice. We found that he cytokine/chemokine profile in B.1.351 re-infected 129S1mice is similar to that during severe SARS-CoV-2 infection in humans and is characterized by a much higher level of IL-10, IL-1ß, IL-18 and IFN-γ, whereas in B.1.351 re-infected K18-hACE2 mice, the cytokine profile echoes the signature of naïve mice undergoing viral infection for the first time. Interestingly, the enhanced pathology observed in 129S1 mice upon reinfection cannot be attributed to a less efficient induction of adaptive immune responses to the initial BA.1 infection, as both K18-hACE2 and 129S1 mice exhibited similar B and T cell responses at 30 DPI against BA.1, with similar anti-BA.1 or B.1.351 spike-specific ELISA binding titers, levels of germinal center B-cells, and SARS-CoV-2-Spike specific tissue-resident T-cells. Long-term effects of BA.1 infection are associated with differential transcriptional changes in bronchoalveolar lavage-derived CD11c + immune cells from K18-hACE2 and 129S1, with K18-hACE2 CD11c + cells showing a strong antiviral defense gene expression profile whereas 129S1 CD11c + cells showed a more pro-inflammatory response. In conclusion, initial infection with BA.1 induces cross-reactive adaptive immune responses in both K18-hACE2 and 129S1 mice, however the different disease outcome of reinfection seems to be driven by differential responses of CD11c + cells in the alveolar space.

9.
Front Immunol ; 14: 1217181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600776

RESUMO

Eosinophils are important mediators of mucosal tissue homeostasis, anti-helminth responses, and allergy. Lung eosinophilia has previously been linked to aberrant Type 2-skewed T cell responses to respiratory viral infection and may also be a consequence of vaccine-associated enhanced respiratory disease (VAERD), particularly in the case of respiratory syncytial virus (RSV) and the formalin-inactivated RSV vaccine. We previously reported a dose-dependent recruitment of eosinophils to the lungs of mice vaccinated with alum-adjuvanted trivalent inactivated influenza vaccine (TIV) following a sublethal, vaccine-matched H1N1 (A/New Caledonia/20/1999; NC99) influenza challenge. Given the differential role of eosinophil subset on immune function, we conducted the investigations herein to phenotype the lung eosinophils observed in our model of influenza breakthrough infection. Here, we demonstrate that eosinophil influx into the lungs of vaccinated mice is adjuvant- and sex-independent, and only present after vaccine-matched sublethal influenza challenge but not in mock-challenged mice. Furthermore, vaccinated and challenged mice had a compositional shift towards more inflammatory eosinophils (iEos) compared to resident eosinophils (rEos), resembling the shift observed in ovalbumin (OVA)-sensitized allergic control mice, however without any evidence of enhanced morbidity or aberrant inflammation in lung cytokine/chemokine signatures. Furthermore, we saw a lung eosinophil influx in the context of a vaccine-mismatched challenge. Additional layers of heterogeneity in the eosinophil compartment were observed via unsupervised clustering analysis of flow cytometry data. Our collective findings are a starting point for more in-depth phenotypic and functional characterization of lung eosinophil subsets in the context of vaccine- and infection-induced immunity.


Assuntos
Asma , Hipersensibilidade , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Eosinofilia Pulmonar , Animais , Camundongos , Infecções Irruptivas , Pulmão
10.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37425792

RESUMO

Hybrid immunity to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.

11.
Sci Transl Med ; 14(676): eade0424, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542692

RESUMO

There is currently no licensed vaccine for respiratory syncytial virus (RSV). Here, we assess the effect of RSV fusion protein (F) conformation on B cell responses in a post hoc comparison of samples from the DS-Cav1 [prefusion (pre-F)] and MEDI7510 [postfusion (post-F)] vaccine clinical trials. We compared the magnitude and quality of the serological and B cell responses across time points and vaccines. We measured RSV A and B neutralization, F-binding immunoglobulin G titers, and competition assays at week 0 (before vaccination) and week 4 (after vaccination) to evaluate antibody specificity and potency. To compare B cell specificity and activation, we used pre-F and post-F probes in tandem with a 17-color immunophenotyping flow cytometry panel at week 0 (before vaccination) and week 1 (after vaccination). Our data demonstrate that both DS-Cav1 and MEDI7510 vaccination robustly elicit F-specific antibodies and B cells, but DS-Cav1 elicited antibodies that more potently neutralized both RSV A and B. The superior potency was mediated by antibodies that bind antigenic sites on the apex of pre-F that are not present on post-F. In the memory (CD27+) B cell compartment, vaccination with DS-Cav1 or MEDI7510 elicited B cells with different epitope specificities. B cells preferentially binding the pre-F probe were activated in DS-Cav1-vaccinated participants but not in MEDI7510-vaccinated participants. Our findings emphasize the importance of using pre-F as an immunogen in humans because of its deterministic role in eliciting highly potent neutralizing antibodies and memory B cells.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Anticorpos Antivirais , Proteínas Virais de Fusão/química , Anticorpos Neutralizantes , Antígenos , Vacinas de Subunidades Antigênicas , Infecções por Vírus Respiratório Sincicial/prevenção & controle
12.
Sci Transl Med ; 14(650): eabo5032, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731888

RESUMO

Respiratory syncytial virus (RSV) is a substantial cause of morbidity and mortality globally. A candidate RSV prefusion (pre-F)-stabilized subunit vaccine, DS-Cav1, has previously been shown to elicit potent and durable neutralizing activity in a phase 1 clinical trial in healthy adults. Here, we used fluorescently labeled probes and flow cytometry to evaluate the antigen specificity and phenotype of RSV F-specific B cells longitudinally after DS-Cav1 immunization. Peripheral blood mononuclear cells (PBMCs) collected at time points before the first immunization through the end of the trial at 44 weeks were assessed by flow cytometry. Our data demonstrate a rapid increase in the frequency of pre-F-specific IgG+ and IgA+ B cells after the first immunization and a modest increase after a second immunization at week 12. Nearly all F-specific B cells down-regulated CD21 and up-regulated the proliferation marker CD71 after the first immunization, with less pronounced activation after the second immunization. Memory B cells (CD27+CD21+) specific for pre-F remained elevated above baseline at 44 weeks after vaccination. DS-Cav1 vaccination also activated human metapneumovirus (HMPV) cross-reactive B cells capable of binding prefusion-stabilized HMPV F protein and increased HMPV F-binding antibodies and neutralizing activity for HMPV in some participants. In summary, vaccination with RSV pre-F resulted in the expansion and activation of RSV and HMPV F-specific B cells that were maintained above baseline for at least 10 months and could contribute to long-term pneumovirus immunity.


Assuntos
Pneumovirus , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Leucócitos Mononucleares , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Proteínas Virais de Fusão/genética
13.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35429403

RESUMO

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Assuntos
Infecções por Vírus Respiratório Sincicial , Citocinas , Humanos , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/deficiência , Vírus Sincicial Respiratório Humano
14.
Nature ; 603(7902): 687-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062015

RESUMO

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Assuntos
COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Cricetinae , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Viral
15.
Front Immunol ; 12: 772864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956199

RESUMO

Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.


Assuntos
Antígenos Virais/genética , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Vírus Nipah/imunologia , Proteínas do Envelope Viral/genética , Proteínas Virais de Fusão/genética , Vacinas Virais/administração & dosagem , Vacinas de mRNA/administração & dosagem , Animais , Antígenos Virais/imunologia , Feminino , Imunoglobulina G/sangue , Camundongos , Parcerias Público-Privadas , RNA Mensageiro/administração & dosagem , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia
16.
J Affect Disord ; 295: 28-32, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391959

RESUMO

OBJECTIVES: To assess feasibility and clinical significance of tracking mania and depression in community college students before and after early identification and intervention. METHODS: From Affective Illness to Recovery: STudent Access to Rapid Treatment (FAIRSTART) is an early intervention program to provide diagnostic therapeutic consultation, short-term care, and community ongoing care referral for 18-28 year-old outpatient community college students (mean age 22.9±4.0 years) experiencing manic symptoms. Over three years, 54 FAIRSTART participants (70% with DSM-IV bipolar I/II/not otherwise specified disorder, BDI/II/NOS) were assessed with the Systematic Treatment Enhancement Program for BD (STEP-BD) Affective Disorders Evaluation (ADE) and followed (range: one-time consult to 4.3±3.6 visits over 3-6 month follow-up) with the STEP-BD Clinical Monitoring Form. RESULTS: 38/54 patients (70%) had BDI/II/NOS, 11 unipolar depression (20%), 1 psychosis spectrum disorder (2%), 2 dysthymia/persistent depressive disorder (4%), and 2 incomplete intake with mood disorder diagnosis undetermined (4%). Average illness duration was 9.1±5.3 years. Among the 38 BD I/II/NOS patients, depression (SUM-D, t(30)=6.5; p<0.001) and mania (SUM-M, t(30)=4.7; p<0.001) scores improved significantly from baseline to last visit, with 17 (44.7%) reporting recovery by time transitioned from FAIRSTART to community care (after 4.3±3.6 visits). CONCLUSIONS: Short-term, early intervention in community college students with mood symptoms appeared feasible and yielded significant improvements in depression and mania scores. However, additional studies, with longer-term follow-ups, larger sample sizes, and comparison to current care standards, are needed to determine this early intervention program's impact on trajectory of mania symptoms in transitional age young adult populations.


Assuntos
Transtorno Bipolar , Adolescente , Adulto , Afeto , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/terapia , Manual Diagnóstico e Estatístico de Transtornos Mentais , Humanos , Estudos Longitudinais , Transtornos do Humor , Adulto Jovem
17.
Immunity ; 54(8): 1869-1882.e6, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270939

RESUMO

Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biópsia , Vacinas contra COVID-19/administração & dosagem , Modelos Animais de Doenças , Humanos , Imunoglobulina G , Imuno-Histoquímica , Camundongos , Avaliação de Resultados em Cuidados de Saúde , RNA Mensageiro , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas de mRNA
18.
Science ; 373(6556)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210892

RESUMO

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , COVID-19/virologia , Humanos , Evasão da Resposta Imune , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Mutação , Testes de Neutralização , Domínios Proteicos , Receptores de Coronavírus/antagonistas & inibidores , Receptores de Coronavírus/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Lancet Respir Med ; 9(10): 1111-1120, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33864736

RESUMO

BACKGROUND: Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine. METHODS: In this randomised, open-label, phase 1 clinical trial, the stabilised prefusion F vaccine DS-Cav1 was evaluated for dose, safety, tolerability, and immunogenicity in healthy adults aged 18-50 years at a single US site. Participants were assigned to receive escalating doses of either 50 µg, 150 µg, or 500 µg DS-Cav1 at weeks 0 and 12, and were randomly allocated in a 1:1 ratio within each dose group to receive the vaccine with or without aluminium hydroxide (AlOH) adjuvant. After 71 participants had been randomised, the protocol was amended to allow some participants to receive a single vaccination at week 0. The primary objectives evaluated the safety and tolerability at every dose within 28 days following each injection. Neutralising activity and RSV F-binding antibodies were evaluated from week 0 to week 44 as secondary and exploratory objectives. Safety was assessed in all participants who received at least one vaccine dose; secondary and exploratory immunogenicity analysis included all participants with available data at a given visit. The trial is registered with ClinicalTrials.gov, NCT03049488, and is complete and no longer recruiting. FINDINGS: Between Feb 21, 2017, and Nov 29, 2018, 244 participants were screened for eligibility and 95 were enrolled to receive DS-Cav1 at the 50 µg (n=30, of which n=15 with AlOH), 150 µg (n=35, of which n=15 with AlOH), or 500 µg (n=30, of which n=15 with AlOH) doses. DS-Cav1 was safe and well tolerated and no serious vaccine-associated adverse events deemed related to the vaccine were identified. DS-Cav1 vaccination elicited robust neutralising activity and binding antibodies by 4 weeks after a single vaccination (p<0·0001 for F-binding and neutralising antibodies). In analyses of exploratory endpoints at week 44, pre-F-binding IgG and neutralising activity were significantly increased compared with baseline in all groups. At week 44, RSV A neutralising activity was 3·1 fold above baseline in the 50 µg group, 3·8 fold in the 150 µg group, and 4·5 fold in the 500 µg group (p<0·0001). RSV B neutralising activity was 2·8 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 3·7 fold in the 500 µg group (p<0·0001). Pre-F-binding IgG remained significantly 3·2 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 4·0 fold in the 500 µg group (p<0·0001). Pre-F-binding serum IgA remained 4·1 fold above baseline in the 50 µg group, 4·3 fold in the 150 µg group, and 4·8 fold in the 500 µg group (p<0·0001). Although a higher vaccine dose or second immunisation elicited a transient advantage compared with lower doses or a single immunisation, neither significantly impacted long-term neutralisation. There was no long-term effect of dose, number of vaccinations, or adjuvant on neutralising activity. INTERPRETATION: In this phase 1 study, DS-Cav1 vaccination was safe and well tolerated. DS-Cav1 vaccination elicited a robust boost in RSV F-specific antibodies and neutralising activity that was sustained above baseline for at least 44 weeks. A single low-dose of pre-F immunisation of antigen-experienced individuals might confer protection that extends throughout an entire RSV season. FUNDING: The National Institutes of Allergy and Infectious Diseases.


Assuntos
Vacinas contra Vírus Sincicial Respiratório , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Método Duplo-Cego , Humanos , Lactente , Pessoa de Meia-Idade , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vírus Sinciciais Respiratórios , Vacinas de Subunidades Antigênicas/efeitos adversos , Adulto Jovem
20.
Immunity ; 54(4): 769-780.e6, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33823129

RESUMO

An effective vaccine for respiratory syncytial virus (RSV) is an unrealized public health goal. A single dose of the prefusion-stabilized fusion (F) glycoprotein subunit vaccine (DS-Cav1) substantially increases serum-neutralizing activity in healthy adults. We sought to determine whether DS-Cav1 vaccination induces a repertoire mirroring the pre-existing diversity from natural infection or whether antibody lineages targeting specific epitopes predominate. We evaluated RSV F-specific B cell responses before and after vaccination in six participants using complementary B cell sequencing methodologies and identified 555 clonal lineages. DS-Cav1-induced lineages recognized the prefusion conformation of F (pre-F) and were genetically diverse. Expressed antibodies recognized all six antigenic sites on the pre-F trimer. We identified 34 public clonotypes, and structural analysis of two antibodies from a predominant clonotype revealed a common mode of recognition. Thus, vaccination with DS-Cav1 generates a diverse polyclonal response targeting the antigenic sites on pre-F, supporting the development and advanced testing of pre-F-based vaccines against RSV.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Criança , Pré-Escolar , Estudos de Coortes , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Vacinação/métodos , Proteínas Virais de Fusão/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA