Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 311(2): H498-507, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371688

RESUMO

The adipokine chemerin causes arterial contraction and is implicated in blood pressure regulation, especially in obese subjects with elevated levels of circulating chemerin. Because chemerin is expressed in the perivascular adipose tissue (PVAT) that surrounds the sympathetic innervation of the blood vessel, we tested the hypothesis that chemerin (endogenous and exogenous) amplifies the sympathetic nervous system in mediating electrical field-stimulated (EFS) contraction. The superior mesenteric artery, with or without PVAT and with endothelium and sympathetic nerve intact, was mounted into isolated tissue baths and used for isometric contraction and stimulation. Immunohistochemistry validated a robust expression of chemerin in the PVAT surrounding the superior mesenteric artery. EFS (0.3-20 Hz) caused a frequency-dependent contraction in isolated arteries that was reduced by the chemerin receptor ChemR23 antagonist CCX832 alone (100 nM; with, but not without, PVAT), but not by the inactive congener CCX826 (100 nM). Exogenous chemerin-9 (1 µM)-amplified EFS-induced contraction in arteries (with and without PVAT) was blocked by CCX832 and the α-adrenergic receptor antagonist prazosin. CCX832 did not directly inhibit, nor did chemerin directly amplify, norepinephrine-induced contraction. Whole mount immunohistochemical experiments support colocalization of ChemR23 with the sympathetic nerve marker tyrosine hydroxylase in superior mesenteric PVAT and, to a lesser extent, in arteries and veins. These studies support the idea that exogenous chemerin modifies sympathetic nerve-mediated contraction through ChemR23 and that ChemR23 may be endogenously activated. This is significant because of the well-appreciated role of the sympathetic nervous system in blood pressure control.


Assuntos
Tecido Adiposo/metabolismo , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Artéria Mesentérica Superior/inervação , Receptores de Quimiocinas/metabolismo , Sistema Nervoso Simpático/metabolismo , Adipocinas , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Quimiocinas/fisiologia , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Masculino , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Mesentérica Superior/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Norepinefrina/farmacologia , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiologia , Simpatomiméticos/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Mediators Inflamm ; 2015: 628340, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457007

RESUMO

While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a(-/-) mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a(-/-) mice. In the mdr1a(-/-) mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Receptores CCR/antagonistas & inibidores , Receptores CCR/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Colite Ulcerativa/genética , Feminino , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Sulfonamidas/uso terapêutico
3.
Arthritis Res Ther ; 16(5): 445, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25248373

RESUMO

INTRODUCTION: Biological drugs are effective in patients with rheumatoid arthritis (RA), but increase severe infections. The CC chemokine receptor (CCR) 9 antagonist was effective for Crohn's disease without critical adverse effects including infections in clinical trials. The present study was carried out to explore the pathogenic roles of chemokine (C-C motif) ligand (CCL) 25 and its receptor, CCR9, in autoimmune arthritis and to study if the CCR9 antagonist could be a new treatment for RA. METHODS: CCL25 and CCR9 expression was examined with immunohistochemistry and Western blotting. Concentration of interleukin (IL)-6, matrix metalloproteinase (MMP)-3 and tumor necrosis factor (TNF)-α was measured with enzyme-linked immunosorbent assays. Effects of abrogating CCR9 on collagen-induced arthritis (CIA) was evaluated using CCR9-deficient mice or the CCR9 antagonist, CCX8037. Fluorescence labeled-CD11b+ splenocytes from CIA mice were transferred to recipient CIA mice and those infiltrating into the synovial tissues of the recipient mice were counted. RESULTS: CCL25 and CCR9 proteins were found in the RA synovial tissues. CCR9 was expressed on macrophages, fibroblast-like synoviocytes (FLS) and dendritic cells in the synovial tissues. Stimulation with CCL25 increased IL-6 and MMP-3 production from RA FLS, and IL-6 and TNF-α production from peripheral blood monocytes. CIA was suppressed in CCR9-deficient mice. CCX8037 also inhibited CIA and the migration of transferred CD11b+ splenocytes into the synovial tissues. CONCLUSIONS: The interaction between CCL25 and CCR9 may play important roles in cell infiltration into the RA synovial tissues and inflammatory mediator production. Blocking CCL25 or CCR9 may represent a novel safe therapy for RA.


Assuntos
Artrite Experimental/prevenção & controle , Movimento Celular/efeitos dos fármacos , Receptores CCR/antagonistas & inibidores , Receptores CCR/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transferência Adotiva , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Western Blotting , Células Cultivadas , Quimiocinas CC/metabolismo , Quimiocinas CC/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Receptores CCR/genética , Baço/citologia , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
PLoS One ; 9(7): e104877, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127029

RESUMO

Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs) which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs) compared with adjacent tissue myofibroblasts (ATMs). The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM) from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF) that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.


Assuntos
Quimiocinas/metabolismo , Neoplasias Esofágicas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Mesenquimais/fisiologia , Miofibroblastos/metabolismo , Animais , Linhagem Celular Tumoral , Quimiotaxia , Neoplasias Esofágicas/patologia , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transplante de Neoplasias , Proteína Quinase C/metabolismo , Receptores de Quimiocinas/metabolismo , Migração Transendotelial e Transepitelial
5.
Arterioscler Thromb Vasc Biol ; 33(6): 1320-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23559624

RESUMO

OBJECTIVE: Obesity and hypertension are comorbid in epidemic proportion, yet their biological connection is largely a mystery. The peptide chemerin is a candidate for connecting fat deposits around the blood vessel (perivascular adipose tissue) to arterial contraction. We presently tested the hypothesis that chemerin is expressed in perivascular adipose tissue and is vasoactive, supporting the existence of a chemerin axis in the vasculature. APPROACH AND RESULTS: Real-time polymerase chain reaction, immunohistochemistry, and Western analyses supported the synthesis and expression of chemerin in perivascular adipose tissue, whereas the primary chemerin receptor ChemR23 was expressed both in the tunica media and endothelial layer. The ChemR23 agonist chemerin-9 caused receptor, concentration-dependent contraction in the isolated rat thoracic aorta, superior mesenteric artery, and mesenteric resistance artery, and contraction was significantly amplified (more than 100%) when nitric oxide synthase was inhibited and the endothelial cell mechanically removed or tone was placed on the arteries. The novel ChemR23 antagonist CCX832 inhibited phenylephrine-induced and prostaglandin F2α-induced contraction (+perivascular adipose tissue), suggesting that endogenous chemerin contributes to contraction. Arteries from animals with dysfunctional endothelium (obese or hypertensive) demonstrated a pronounced contraction to chemerin-9. Finally, mesenteric arteries from obese humans demonstrate amplified contraction to chemerin-9. CONCLUSIONS: These data support a new role for chemerin as an endogenous vasoconstrictor that operates through a receptor typically attributed to function only in immune cells.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Aorta Torácica/metabolismo , Quimiocinas/metabolismo , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/fisiologia , Vasoconstrição/fisiologia , Tecido Adiposo/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Hipertensão/metabolismo , Imunoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Artérias Mesentéricas/efeitos dos fármacos , Obesidade/metabolismo , Fenilefrina/farmacologia , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
6.
Bioorg Med Chem Lett ; 23(5): 1228-31, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23374868

RESUMO

A novel series of CCR1 antagonists based on the 1-(4-phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanone scaffold was identified by screening a compound library utilizing CCR1-expressing human THP-1 cells. SAR studies led to the discovery of the highly potent and selective CCR1 antagonist 14 (CCR1 binding IC(50)=4 nM using [(125)I]-CCL3 as the chemokine ligand). Compound 14 displayed promising pharmacokinetic and toxicological profiles in preclinical species.


Assuntos
Piperazinas/farmacologia , Pirazóis/farmacologia , Receptores CCR1/antagonistas & inibidores , Linhagem Celular , Humanos , Piperazinas/química , Pirazóis/química , Receptores CCR1/metabolismo , Relação Estrutura-Atividade
7.
PLoS One ; 7(11): e50498, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209760

RESUMO

A goal for developers of immunomodulatory drugs has long been a systemically administered small molecule that can selectively inhibit inflammation in specific tissues. The chemokine receptor CCR9 is an attractive target for this approach, as entry of T cells into the small intestine from blood requires interaction between CCR9 and its ligand CCL25. We have tested the ability of a small molecule CCR9 antagonist, CCX8037, to inhibit antigen-mediated T cell accumulation in the intestine. This compound prevented accumulation of gut-imprinted antigen-specific CD8 T cells within epithelium of the small intestine. Interestingly, the antagonist did not affect the robust generation of gut-imprinted CD8 T cells within mesenteric lymph nodes. To distinguish "gut-selective" from "general" T cell inhibition, we tested the drug's ability to influence accumulation of T cells within skin, a tissue in which CCR9 plays no known role, and we found no appreciable effect. This study demonstrates the feasibility of creating systemically-administered pharmaceuticals capable of tissue-selective immune modulation. This proof of concept is of utmost importance for designing effective treatments against various autoimmune disorders localized to a specific tissue.


Assuntos
Fatores Imunológicos/farmacologia , Linfócitos/metabolismo , Receptores CCR/antagonistas & inibidores , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Quimiocinas CC/metabolismo , Feminino , Citometria de Fluxo , Humanos , Linfócitos/efeitos dos fármacos , Masculino , Camundongos
8.
Bioorg Med Chem ; 14(13): 4552-67, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16524737

RESUMO

A series of analogs of the potent HIV-1 integrase (HIV IN) inhibitor chicoric acid (CA) was designed with the intention of ameliorating some of the parent natural product's undesirable properties, in particular its toxicity, instability, and poor membrane permeability. More than 70 analogs were synthesized and assayed for three types of activity: (1) the ability to inhibit 3'-end processing and strand transfer reactions using recombinant HIV IN in vitro, (2) toxicity against the CD4+ lymphoblastoid cell line, MT2, and (3) anti-HIV activity against HIV(LAI). CA analogs lacking one of the carboxyl groups of CA and with 3,4,5-trihydroxycinnamoyl sidechains in place of the caffeoyl group of CA exhibited the most potent inhibition of HIV replication and end-processing activity. Galloyl-substituted derivatives also displayed very potent in vitro and in vivo activities, in most cases exceeding the inhibitory effects of CA itself. Conversely, analogous monocarboxy caffeoyl analogs exhibited only modest inhibition, while the corresponding 3,4-dihydroxybenzoyl-substituted compounds were devoid of activity.


Assuntos
Fármacos Anti-HIV/química , Ácidos Cafeicos/química , Desenho de Fármacos , Inibidores de Integrase de HIV/química , Succinatos/química , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular , HIV/efeitos dos fármacos , Inibidores de Integrase de HIV/síntese química , Inibidores de Integrase de HIV/farmacologia , Humanos , Recombinação Genética/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA