Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(10): 6554-6568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37676906

RESUMO

PURPOSE: An accurate estimation of range uncertainties is essential to exploit the potential of proton therapy. According to Paganetti's study, a value of 2.4% (1.5 standard deviation) is currently recommended for planning robust treatments with Monte Carlo dose engines. This number is based on a dominant contribution from the mean excitation energy of tissues. However, it was recently shown that expressing tissues as a mixture of water and "dry" material in the CT calibration process allowed for a significant reduction of this uncertainty. We thus propose an adapted framework for pencil beam scanning robust optimization. First, we move towards a spot-specific range uncertainty (SSRU) determination. Second, we use the water-based formalism to reduce range uncertainties and, potentially, to spare better the organs at risk. METHODS: The stoichiometric calibration was adapted to provide a molecular decomposition (including water) of each voxel of the CT. The SSRU calculation was implemented in MCsquare, a fast Monte Carlo dose engine dedicated to proton therapy. For each spot, a ray-tracing method was used to propagate molecular I-values uncertainties and obtain the corresponding effective range uncertainty. These were then combined with other sources of range uncertainties, according to Paganetti's study of 2012. The method was then assessed on three head-and-neck patients. Two plans were optimized for each patient: the first one with the classical 2.4% flat range uncertainty (FRU), the second one with the variable range uncertainty. Both plans were then compared in terms of target coverage and OAR mean dose reduction. Robustness evaluations were also performed, using the SSRU for both plans in order to simulate errors as realistically as possible. RESULTS: For patient 1, it was found that the median SSRU was 1.04% (1.5 standard deviation), yielding, therefore, a very large reduction from the 2.4% FRU. All three SSRU plans were found to have a very good robustness level at a 90% confidence interval while sparing OAR better than the classical plan. For instance, in nominal cases, average reductions in the mean dose of 15.7, 8.4, and 13.2% were observed in the left parotid, right parotid, and pharyngeal constrictor muscle, respectively. As expected, the classical plans showed a higher but unnecessary level of robustness. CONCLUSIONS: Promising results of the SSRU framework were observed on three head-and-neck cases, and more patients should now be considered. The method could also benefit to other tumor sites and, in the long run, the variable part of the range uncertainty could be generalized to other sources of uncertainty in order to move towards more and more patient-specific treatments.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Terapia com Prótons/métodos , Incerteza , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Água , Órgãos em Risco
2.
Radiother Oncol ; 159: 224-230, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798611

RESUMO

PURPOSE: The purpose of this phantom study is to demonstrate that thermoacoustic range verification could be performed clinically. Thermoacoustic emissions generated in an anatomical multimodality imaging phantom during delivery of a clinical plan are compared to simulated emissions to estimate range shifts compared to the treatment plan. METHODS: A single-field 12-layerproton pencil beam scanning (PBS)treatment plancreated in Pinnacle prescribing6 Gy/fractionwas delivered by a superconducting synchrocyclotron to a triple modality (CT, MRI, and US) abdominal imaging phantom.Data was acquired by four acoustic receivers rigidly affixed to a linear ultrasound array. Receivers 1-2 were located distal to the treatment volume, whereas 3-4 were lateral. Receivers' room coordinates were computed relative to the ultrasound image plane after co-registration to the planning CT volume. For each prescribed beamlet, a set of thermoacoustic emissions corresponding to varied beam energies were computed. Simulated emissions were compared to measured emissions to estimate shifts of the Bragg peak. RESULTS: Shifts were small for high-dose beamlets that stopped in soft tissue. Signals acquired by channels 1-2 yielded shifts of -0.2±0.7mm relative to Monte Carlo simulations for high dose spots (~40 cGy) in the second layer. Additionally, for beam energy ≥125 MeV, thermoacoustic emissions qualitatively tracked lateral motion of pristine beams in a layered gelatin phantom, and time shifts induced by changing phantom layers were self-consistent within nanoseconds. CONCLUSIONS: Acoustic receivers tuned to spectra of thermoacoustic emissions may enable range verification during proton therapy.


Assuntos
Terapia com Prótons , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Ultrassonografia
3.
Phys Med Biol ; 66(10)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621962

RESUMO

Proton radiography imaging was proposed as a promising technique to evaluate internal anatomical changes, to enable pre-treatment patient alignment, and most importantly, to optimize the patient specific CT number to stopping-power ratio conversion. The clinical implementation rate of proton radiography systems is still limited due to their complex bulky design, together with the persistent problem of (in)elastic nuclear interactions and multiple Coulomb scattering (i.e. range mixing). In this work, a compact multi-energy proton radiography system was proposed in combination with an artificial intelligence network architecture (ProtonDSE) to remove the persistent problem of proton scatter in proton radiography. A realistic Monte Carlo model of the Proteus®One accelerator was built at 200 and 220 MeV to isolate the scattered proton signal in 236 proton radiographies of 80 digital anthropomorphic phantoms. ProtonDSE was trained to predict the proton scatter distribution at two beam energies in a 60%/25%/15% scheme for training, testing, and validation. A calibration procedure was proposed to derive the water equivalent thickness image based on the detector dose response relationship at both beam energies. ProtonDSE network performance was evaluated with quantitative metrics that showed an overall mean absolute percentage error below 1.4% ± 0.4% in our test dataset. For one example patient, detector dose to WET conversions were performed based on the total dose (ITotal), the primary proton dose (IPrimary), and the ProtonDSE corrected detector dose (ICorrected). The determined WET accuracy was compared with respect to the reference WET by idealistic raytracing in a manually delineated region-of-interest inside the brain. The error was determined 4.3% ± 4.1% forWET(ITotal),2.2% ± 1.4% forWET(IPrimary),and 2.5% ± 2.0% forWET(ICorrected).


Assuntos
Terapia com Prótons , Prótons , Inteligência Artificial , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiografia
4.
Med Phys ; 48(1): 387-396, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33125725

RESUMO

PURPOSE: One of the main sources of uncertainty in proton therapy is the conversion of the Hounsfield Units of the planning CT to (relative) proton stopping powers. Proton radiography provides range error maps but these can be affected by other sources of errors as well as the CT conversion (e.g., residual misalignment). To better understand and quantify range uncertainty, it is desirable to measure the individual contributions and particularly those associated to the CT conversion. METHODS: A workflow is proposed to carry out an assessment of the CT conversion solely on the basis of proton radiographs of real tissues measured with a multilayer ionization chamber (MLIC). The workflow consists of a series of four stages: (a) CT and proton radiography acquisitions, (b) CT and proton radiography registration in postprocessing, (c) sample-specific validation of the semi-empirical model both used in the registration and to estimate the water equivalent path length (WEPL), and (d) WEPL error estimation. The workflow was applied to a pig head as part of the validation of the CT calibration of the proton therapy center PARTICLE at UZ Leuven, Belgium. RESULTS: The CT conversion-related uncertainty computed based on the well-established safety margin rule of 1.2 mm + 2.4% were overestimated by 71% on the pig head. However, the range uncertainty was very much underestimated where cavities were encountered by the protons. Excluding areas with cavities, the overestimation of the uncertainty was 500%. A correlation was found between these localized errors and HUs between -1000 and -950, suggesting that the underestimation was not a consequence of an inaccurate conversion but was probably rather due to the resolution of the CT leading to material mixing at interfaces. To reduce these errors, the CT calibration curve was adapted by increasing the HU interval corresponding to the air up to -950. CONCLUSION: The application of the workflow as part of the validation of the CT conversion to RSPs showed an overall overestimation of the expected uncertainty. Moreover, the largest WEPL errors were found to be related to the presence of cavities which nevertheless are associated with low WEPL values. This suggests that the use of this workflow on patients or in a generalized study on different types of animal tissues could shed sufficient light on how the contributions to the CT conversion-related uncertainty add up to potentially reduce up to several millimeters the uncertainty estimations taken into account in treatment planning. All the algorithms required to perform the workflow were implemented in the computational tool named openPR which is part of openREGGUI, an open-source image processing platform for adaptive proton therapy.


Assuntos
Terapia com Prótons , Prótons , Animais , Calibragem , Humanos , Imagens de Fantasmas , Radiografia , Planejamento da Radioterapia Assistida por Computador , Suínos , Tomografia Computadorizada por Raios X
5.
Med Phys ; 47(7): 2746-2754, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155667

RESUMO

PURPOSE: Robust optimization is a computational expensive process resulting in long plan computation times. This issue is especially critical for moving targets as these cases need a large number of uncertainty scenarios to robustly optimize their treatment plans. In this study, we propose a novel worst-case robust optimization algorithm, called dynamic minimax, that accelerates the conventional minimax optimization. Dynamic minimax optimization aims at speeding up the plan optimization process by decreasing the number of evaluated scenarios in the optimization. METHODS: For a given pool of scenarios (e.g., 63 = 7 setup  × 3 range  × 3 breathing phases), the proposed dynamic minimax algorithm only considers a reduced number of candidate-worst scenarios, selected from the full 63 scenario set. These scenarios are updated throughout the optimization by randomly sampling new scenarios according to a hidden variable P, called the "probability acceptance function," which associates with each scenario the probability of it being selected as the worst case. By doing so, the algorithm favors scenarios that are mostly "active," that is, frequently evaluated as the worst case. Additionally, unconsidered scenarios have the possibility to be re-considered, later on in the optimization, depending on the convergence towards a particular solution. The proposed algorithm was implemented in the open-source robust optimizer MIROpt and tested for six four-dimensional (4D) IMPT lung tumor patients with various tumor sizes and motions. Treatment plans were evaluated by performing comprehensive robustness tests (simulating range errors, systematic setup errors, and breathing motion) using the open-source Monte Carlo dose engine MCsquare. RESULTS: The dynamic minimax algorithm achieved an optimization time gain of 84%, on average. The dynamic minimax optimization results in a significantly noisier optimization process due to the fact that more scenarios are accessed in the optimization. However, the increased noise level does not harm the final quality of the plan. In fact, the plan quality is similar between dynamic and conventional minimax optimization with regard to target coverage and normal tissue sparing: on average, the difference in worst-case D95 is 0.2 Gy and the difference in mean lung dose and mean heart dose is 0.4 and 0.1 Gy, respectively (evaluated in the nominal scenario). CONCLUSIONS: The proposed worst-case 4D robust optimization algorithm achieves a significant optimization time gain of 84%, without compromising target coverage or normal tissue sparing.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
6.
Med Phys ; 47(6): 2558-2574, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32153029

RESUMO

PURPOSE: To commission an open source Monte Carlo (MC) dose engine, "MCsquare" for a synchrotron-based proton machine, integrate it into our in-house C++-based I/O user interface and our web-based software platform, expand its functionalities, and improve calculation efficiency for intensity-modulated proton therapy (IMPT). METHODS: We commissioned MCsquare using a double Gaussian beam model based on in-air lateral profiles, integrated depth dose of 97 beam energies, and measurements of various spread-out Bragg peaks (SOBPs). Then we integrated MCsquare into our C++-based dose calculation code and web-based second check platform "DOSeCHECK." We validated the commissioned MCsquare based on 12 different patient geometries and compared the dose calculation with a well-benchmarked GPU-accelerated MC (gMC) dose engine. We further improved the MCsquare efficiency by employing the computed tomography (CT) resampling approach. We also expanded its functionality by adding a linear energy transfer (LET)-related model-dependent biological dose calculation. RESULTS: Differences between MCsquare calculations and SOBP measurements were <2.5% (<1.5% for ~85% of measurements) in water. The dose distributions calculated using MCsquare agreed well with the results calculated using gMC in patient geometries. The average 3D gamma analysis (2%/2 mm) passing rates comparing MCsquare and gMC calculations in the 12 patient geometries were 98.0 ± 1.0%. The computation time to calculate one IMPT plan in patients' geometries using an inexpensive CPU workstation (Intel Xeon E5-2680 2.50 GHz) was 2.3 ± 1.8 min after the variable resolution technique was adopted. All calculations except for one craniospinal patient were finished within 3.5 min. CONCLUSIONS: MCsquare was successfully commissioned for a synchrotron-based proton beam therapy delivery system and integrated into our web-based second check platform. After adopting CT resampling and implementing LET model-dependent biological dose calculation capabilities, MCsquare will be sufficiently efficient and powerful to achieve Monte Carlo-based and LET-guided robust optimization in IMPT, which will be done in the future studies.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Transferência Linear de Energia , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
Biomed Phys Eng Express ; 6(6)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35073540

RESUMO

Kilovoltage intrafraction monitoring (KIM) is a method allowing to precisely infer the tumour trajectory based on cone beam computed tomography (CBCT) 2D-projections. However, its accuracy is deteriorated in the case of highly mobile tumours involving hysteresis. A first adaptation of KIM consisting of a prior amplitude based binning step has been developed in order to minimize the errors of the original model (phase-KIM). In this work, we propose enhanced methods (KIMsub-arc optimand phase-KIMsub-arc optim) to improve the accuracy of KIM and phase-KIM which relies on the selection of the optimal starting CBCT gantry angle. Aiming at demonstrating the interest of our approach, we carried out a simulation study and an experimental study: we compared the accuracy of the conventional versus sub-arc optim methods on simulated realistic tumour motions with amplitudes ranging from 5 to 30 mm in 1 mm increments. The same approach was performed using a lung dynamic phantom generating a 30 mm amplitude sinusoidal motion. The results show that for in-silico simulated motions of 10, 20 and 30 mm amplitude, the three-dimensional root mean square error (3D-RMSE) can be reduced by 0.67 mm, 0.91 mm, 0.94 mm and 0.18 mm, 0.25 mm, 0.28 mm using KIMsub-arc optimand phase-KIMsub-arc optimrespectively. Considering all in-silico simulated trajectories, the percentage of errors larger than 1 mm decreases from 21.9% down to 1.6% for KIM (p < 0.001) and from 6.6% down to 1.2% for phase-KIM (p < 0.001). Experimentally, the 3D-RMSE is lowered by 0.5732 mm for KIM and by 0.1 mm for phase-KIM. The percentage of errors larger than 1 mm falls from 39.7% down to 18.5% for KIM and from 23.2% down to 11.1% for phase-KIM. In conclusion, our method efficiently anticipates CBCT gantry angles associated with a significantly better accuracy by using KIM and phase-KIM.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Movimento (Física) , Imagens de Fantasmas
8.
Med Phys ; 47(2): 681-692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31660623

RESUMO

PURPOSE: Due to the increasing complexity of IMRT/IMPT treatments, quality assurance (QA) is essential to verify the quality of the dose distribution actually delivered. In this context, Monte Carlo (MC) simulations are more and more often used to verify the accuracy of the treatment planning system (TPS). The most common method of dose comparison is the γ-test, which combines dose difference and distance-to-agreement (DTA) criteria. However, this method is known to be dependent on the noise level in dose distributions. We propose here a method to correct the bias of the γ passing rate (GPR) induced by MC noise. METHODS: The GPR amplitude was studied as a function of the MC noise level. A model of this noise effect was mathematically derived. This model was then used to predict the time-consuming low-noise GPR by fitting multiple fast MC dose calculations. MC dose maps with a noise level between 2% and 20% were computed, and the GPR was predicted at a noise level of 0.3%. Due to the asymmetry of the γ-test, two different cases were considered: the MC dose was first set as reference dose, then as evaluated dose in the γ-test. Our method was applied on six proton therapy plans including analytical doses from the TPS or patient-specific QA measurements. RESULTS: An average absolute error of 4.31% was observed on the GPR computed for MC doses with 2% statistical noise. Our method was able to improve the accuracy of the gamma passing rate by up to 13%. The method was found especially efficient to correct the noise bias when the DTA criterion is low. CONCLUSIONS: We propose a method to enhance the γ-evaluation of a treatment plan when there is noise in one of the compared distributions. The method allows, in a tractable time, to detect the cases for which a correction is necessary and can improve the accuracy of the resulting passing rates.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Aumento da Imagem , Modelos Teóricos , Método de Monte Carlo , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Razão Sinal-Ruído
9.
Med Phys ; 46(12): 5816-5823, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31603992

RESUMO

PURPOSE: To introduce a new algorithm-MicroCalc-for dose calculation by modeling microdosimetric energy depositions and the spectral fluence at each point of a particle beam. Proton beams are considered as a particular case of the general methodology. By comparing the results obtained against Monte Carlo computations, we aim to validate the microdosimetric formalism presented here and in previous works. MATERIALS AND METHODS: In previous works, we developed a function on the energy for the average energy imparted to a microdosimetric site per event and a model to compute the energetic spectrum at each point of the patient image. The number of events in a voxel is estimated assuming a model in which the voxel is completely filled by microdosimetric sites. Then, dose at every voxel is computed by integrating the average energy imparted per event multiplied by the number of events per energy beam of the spectral distribution within the voxel. Our method is compared with the proton convolution superposition (PCS) algorithm implemented in Eclipse™ and the fast Monte Carlo code MCsquare, which is here considered the benchmark, for in-water calculations, using in both cases clinically validated beam data. Two clinical cases are considered: a brain and a prostate case. RESULTS: For a SOBP beam in water, the mean difference at the central axis found for MicroCalc is of 0.86% against 1.03% for PCS. Three-dimensional gamma analyses in the PTVs compared with MCsquare for criterion (3%, 3 mm) provide gamma index of 95.07% with MicroCalc vs 94.50% with PCS for the brain case and 99.90% vs 100.00%, respectively, for the prostate case. For selected organs at risk in each case (brainstem and rectum), mean and maximum difference with respect to MCsquare dose are analyzed. In the brainstem, mean differences are 0.25 Gy (MicroCalc) vs 0.56 Gy (PCS), whereas for the rectum, these values are 0.05 Gy (MicroCalc) vs 0.07 Gy (PCS). CONCLUSIONS: The accuracy of MicroCalc seems to be, at least, not inferior to PCS, showing similar or better agreement with MCsquare in the considered cases. Additionally, the algorithm enables simultaneous computation of other quantities of interest. These results seem to validate the microdosimetric methodology in which the algorithm is based on.


Assuntos
Algoritmos , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA