Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895375

RESUMO

In Drosophila , two interacting adhesion protein families, Dprs and DIPs, coordinate the assembly of neural networks. While intercellular DIP/Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact in cis . We show, in cultured cells and in vivo, that DIP-α and DIP-δ can interact in cis with their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed in cis with their cognate partners, these Dprs regulate the extent of trans binding, presumably through competitive cis interactions. We demonstrate the neurodevelopmental effects of cis inhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required for cis but not trans interactions, likely because it alleviates geometric constraints on cis binding. Thus, the balance between cis and trans interactions plays a role in controlling neural development.

2.
Nat Commun ; 11(1): 2125, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358559

RESUMO

Differential binding affinities among closely related protein family members underlie many biological phenomena, including cell-cell recognition. Drosophila DIP and Dpr proteins mediate neuronal targeting in the fly through highly specific protein-protein interactions. We show here that DIPs/Dprs segregate into seven specificity subgroups defined by binding preferences between their DIP and Dpr members. We then describe a sequence-, structure- and energy-based computational approach, combined with experimental binding affinity measurements, to reveal how specificity is coded on the canonical DIP/Dpr interface. We show that binding specificity of DIP/Dpr subgroups is controlled by "negative constraints", which interfere with binding. To achieve specificity, each subgroup utilizes a different combination of negative constraints, which are broadly distributed and cover the majority of the protein-protein interface. We discuss the structural origins of negative constraints, and potential general implications for the evolutionary origins of binding specificity in multi-protein families.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Drosophila , Proteínas de Drosophila/genética , Evolução Molecular , Estrutura Secundária de Proteína , Análise de Sequência de Proteína
4.
Neuron ; 100(6): 1369-1384.e6, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30467079

RESUMO

Drosophila Dpr (21 paralogs) and DIP proteins (11 paralogs) are cell recognition molecules of the immunoglobulin superfamily (IgSF) that form a complex protein interaction network. DIP and Dpr proteins are expressed in a synaptic layer-specific fashion in the visual system. How interactions between these proteins regulate layer-specific synaptic circuitry is not known. Here we establish that DIP-α and its interacting partners Dpr6 and Dpr10 regulate multiple processes, including arborization within layers, synapse number, layer specificity, and cell survival. We demonstrate that heterophilic binding between Dpr6/10 and DIP-α and homophilic binding between DIP-α proteins promote interactions between processes in vivo. Knockin mutants disrupting the DIP/Dpr binding interface reveal a role for these proteins during normal development, while ectopic expression studies support an instructive role for interactions between DIPs and Dprs in circuit development. These studies support an important role for the DIP/Dpr protein interaction network in regulating cell-type-specific connectivity patterns.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurópilo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Bulbo/citologia , Bulbo/crescimento & desenvolvimento , Mutação/genética , Mapas de Interação de Proteínas , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Transfecção , Vias Visuais/metabolismo
5.
Neuron ; 100(6): 1385-1400.e6, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30467080

RESUMO

Binding between DIP and Dpr neuronal recognition proteins has been proposed to regulate synaptic connections between lamina and medulla neurons in the Drosophila visual system. Each lamina neuron was previously shown to express many Dprs. Here, we demonstrate, by contrast, that their synaptic partners typically express one or two DIPs, with binding specificities matched to the lamina neuron-expressed Dprs. A deeper understanding of the molecular logic of DIP/Dpr interaction requires quantitative studies on the properties of these proteins. We thus generated a quantitative affinity-based DIP/Dpr interactome for all DIP/Dpr protein family members. This revealed a broad range of affinities and identified homophilic binding for some DIPs and some Dprs. These data, along with full-length ectodomain DIP/Dpr and DIP/DIP crystal structures, led to the identification of molecular determinants of DIP/Dpr specificity. This structural knowledge, along with a comprehensive set of quantitative binding affinities, provides new tools for functional studies in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Bulbo/citologia , Neurônios/metabolismo , Vias Visuais/citologia , Animais , Animais Geneticamente Modificados , Comunicação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Ligação Proteica , Ressonância de Plasmônio de Superfície , Transfecção
6.
Proc Natl Acad Sci U S A ; 109(3): E127-34, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22171007

RESUMO

Vertebrate classical cadherins mediate selective calcium-dependent cell adhesion by mechanisms now understood at the atomic level. However, structures and adhesion mechanisms of cadherins from invertebrates, which are highly divergent yet function in similar roles, remain unknown. Here we present crystal structures of three- and four-tandem extracellular cadherin (EC) domain segments from Drosophila N-cadherin (DN-cadherin), each including the predicted N-terminal EC1 domain (denoted EC1') of the mature protein. While the linker regions for the EC1'-EC2' and EC3'-EC4' pairs display binding of three Ca(2+) ions similar to that of vertebrate cadherins, domains EC2' and EC3' are joined in a "kinked" orientation by a previously uncharacterized Ca(2+)-free linker. Biophysical analysis demonstrates that a construct containing the predicted N-terminal nine EC domains of DN-cadherin forms homodimers with affinity similar to vertebrate classical cadherins, whereas deleting the ninth EC domain ablates dimerization. These results suggest that, unlike their vertebrate counterparts, invertebrate cadherins may utilize multiple EC domains to form intercellular adhesive bonds. Sequence analysis reveals that similar Ca(2+)-free linkers are widely distributed in the ectodomains of both vertebrate and invertebrate cadherins.


Assuntos
Caderinas/química , Cálcio/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/metabolismo , Adesividade , Sequência de Aminoácidos , Animais , Caderinas/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA