Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Infect Immun ; 90(4): e0004822, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311544

RESUMO

It is becoming increasingly clear that the communities of microorganisms that populate the surfaces exposed to the external environment, termed microbiota, are key players in the regulation of pathogen-host cross talk affecting the onset as well as the outcome of infectious diseases. We have performed a multicenter, prospective, observational study in which nasal and oropharyngeal swabs were collected for microbiota predicting the risk of invasive fungal infections (IFIs) in patients with hematological malignancies. Here, we demonstrate that the nasal and oropharyngeal microbiota are different, although similar characteristics differentiate high-risk from low-risk samples at both sites. Indeed, similar to previously published results on the oropharyngeal microbiota, high-risk samples in the nose were characterized by low diversity, a loss of beneficial bacteria, and an expansion of potentially pathogenic taxa, in the presence of reduced levels of tryptophan (Trp). At variance with oropharyngeal samples, however, low Trp levels were associated with defective host-derived kynurenine production, suggesting reduced tolerance mechanisms at the nasal mucosal surface. This was accompanied by reduced levels of the chemokine interleukin-8 (IL-8), likely associated with a reduced recruitment of neutrophils and impaired fungal clearance. Thus, the nasal and pharyngeal microbiomes of hematological patients provide complementary information that could improve predictive tools for the risk of IFI in hematological patients.


Assuntos
Infecções Fúngicas Invasivas , Microbiota , Bactérias , Humanos , Nariz/microbiologia , Estudos Prospectivos
2.
Front Microbiol ; 12: 665743, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777268

RESUMO

National screening programs use dried blood specimens to detect metabolic disorders or aberrant protein functions that are not clinically evident in the neonatal period. Similarly, gut microbiota metabolites and immunological acute-phase proteins may reveal latent immune aberrations. Microbial metabolites interact with xenobiotic receptors (i.e., aryl hydrocarbon and pregnane-X) to maintain gastrointestinal tissue health, supported by acute-phase proteins, functioning as sensors of microbial immunomodulation and homeostasis. The delivery (vaginal or cesarean section) shapes the microbial colonization, which substantially modulates both the immune system's response and mucosal homeostasis. This study profiled microbial metabolites of the kynurenine and tryptophan pathway and acute-phase proteins in 134 neonatal dried blood specimens. We newly established neonatal blood levels of microbial xenobiotic receptors ligands (i.e., indole-3-aldehyde, indole-3-butyric acid, and indole-3-acetamide) on the second day of life. Furthermore, we observed diverse microbial metabolic profiles in neonates born vaginally and via cesarean section, potentially due to microbial immunomodulatory influence. In summary, these findings suggest the supportive role of human gut microbiota in developing and maintaining immune system homeostasis.

3.
Anal Chem ; 93(26): 9103-9110, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34156818

RESUMO

Exploratory mass spectrometry-based metabolomics generates a plethora of features in a single analysis. However, >85% of detected features are typically false positives due to inefficient elimination of chimeric signals and chemical noise not relevant for biological and clinical data interpretation. The data processing is considered a bottleneck to unravel the translational potential in metabolomics. Here, we describe a systematic workflow to refine exploratory metabolomics data and reduce reported false positives. We applied the feature filtering workflow in a case/control study exploring common variable immunodeficiency (CVID). In the first stage, features were detected from raw liquid chromatography-mass spectrometry data by XCMS Online processing, blank subtraction, and reproducibility assessment. Detected features were annotated in metabolomics databases to produce a list of tentative identifications. We scrutinized tentative identifications' physicochemical properties, comparing predicted and experimental reversed-phase liquid chromatography (LC) retention time. A prediction model used a linear regression of 42 retention indices with the cLogP ranging from -6 to 11. The LC retention time probes the physicochemical properties and effectively reduces the number of tentatively identified metabolites, which are further submitted to statistical analysis. We applied the retention time-based analytical feature filtering workflow to datasets from the Metabolomics Workbench (www.metabolomicsworkbench.org), demonstrating the broad applicability. A subset of tentatively identified metabolites significantly different in CVID patients was validated by MS/MS acquisition to confirm potential CVID biomarkers' structures and virtually eliminate false positives. Our exploratory metabolomics data processing workflow effectively removes false positives caused by the chemical background and chimeric signals inherent to the analytical technique. It reduced the number of tentatively identified metabolites by 88%, from initially detected 6940 features in XCMS to 839 tentative identifications and streamlined consequent statistical analysis and data interpretation.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Biomarcadores , Cromatografia Líquida , Humanos , Reprodutibilidade dos Testes
4.
Front Public Health ; 9: 622558, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768085

RESUMO

To address the lack of high-resolution electron ionisation mass spectral libraries (HR-[EI+]-MS) for environmental chemicals, a retention-indexed HR-[EI+]-MS library has been constructed following analysis of authentic compounds via GC-Orbitrap MS. The library is freely provided alongside a compound database of predicted physicochemical properties. Currently, the library contains over 350 compounds from 56 compound classes and includes a range of legacy and emerging contaminants. The RECETOX Exposome HR-[EI+]-MS library expands the number of freely available resources for use in full-scan chemical exposure studies and is available at: https://doi.org/10.5281/zenodo.4471217.


Assuntos
Expossoma , Gerenciamento de Dados , Cromatografia Gasosa-Espectrometria de Massas
5.
Infect Immun ; 89(8): e0010521, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782152

RESUMO

The ability to predict invasive fungal infections (IFI) in patients with hematological malignancies is fundamental for successful therapy. Although gut dysbiosis is known to occur in hematological patients, whether airway dysbiosis also contributes to the risk of IFI has not been investigated. Nasal and oropharyngeal swabs were collected for functional microbiota characterization in 173 patients with hematological malignancies recruited in a multicenter, prospective, observational study and stratified according to the risk of developing IFI. A lower microbial richness and evenness were found in the pharyngeal microbiota of high-risk patients that were associated with a distinct taxonomic and metabolic profile. A murine model of IFI provided biologic plausibility for the finding that loss of protective anaerobes, such as Clostridiales and Bacteroidetes, along with an apparent restricted availability of tryptophan, is causally linked to the risk of IFI in hematologic patients and indicates avenues for antimicrobial stewardship and metabolic reequilibrium in IFI.


Assuntos
Doenças Hematológicas/complicações , Microbiota , Micoses/etiologia , Faringe/microbiologia , Pneumonia/etiologia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias Hematológicas/complicações , Humanos , Metagenoma , Metagenômica/métodos , Camundongos , Micoses/diagnóstico , Micoses/tratamento farmacológico , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Medição de Risco , Fatores de Risco
6.
J Am Soc Mass Spectrom ; 30(2): 289-298, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30456596

RESUMO

The practicality of matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) applied to molecular imaging of biological tissues is limited by the analysis speed. Typically, a relatively low speed of stop-and-go micromotion of XY stages is considered as a factor substantially reducing the rate with which fresh sample material can be supplied to the laser spot. The sample scan rate in our laboratory-built high-throughput imaging TOF mass spectrometer was significantly improved through the use of a galvanometer-based optical scanner performing fast laser spot repositioning on a target plate. The optical system incorporated into the ion source of our MALDI TOF mass spectrometer allowed focusing the laser beam via a modified grid into a 10-µm round spot. This permitted the acquisition of high-resolution MS images with a well-defined pixel size at acquisition rates exceeding 100 pixel/s. The influence of selected parameters on the total MS imaging time is discussed. The new scanning technique was employed to display the distribution of an antitumor agent in 3D colorectal adenocarcinoma cell aggregates; a single MS image comprising 100 × 100 pixels with 10-µm lateral resolution was recorded in approximately 70 s. Graphical Abstract.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Eletrodos , Desenho de Equipamento , Células HT29 , Humanos , Lasers , Esferoides Celulares/química
7.
Anal Chim Acta ; 968: 58-65, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28395775

RESUMO

A new multiple detection arrangement for liquid chromatography (LC) that supplements conventional electrospray ionization (ESI) mass spectrometry (MS) detection with two complementary detection techniques, matrix-assisted laser desorption/ionization (MALDI) MS and substrate-assisted laser desorption inductively coupled plasma (SALD ICP) MS has been developed. The combination of the molecular and elemental detectors in a single separation run is accomplished by utilizing a commercial MALDI target made of conductive plastic. The proposed platform provides a number of benefits in today's metalloproteomic applications, which are demonstrated by analysis of a metallothionein mixture. To maintain metallothionein complexes, separation is carried out at a neutral pH. The effluent is split; a major portion is directed to ESI MS while the remaining 1.8% fraction is deposited onto a plastic MALDI target. Dried droplets are overlaid with MALDI matrix and analysed consecutively by MALDI MS and SALD ICP MS. In the ESI MS spectra, the MT isoform complexes with metals and their stoichiometry are determined; the apoforms are revealed in the MALDI MS spectra. Quantitative determination of metallothionein isoforms is performed via determination of metals in the complexes of the individual protein isoforms using SALD ICP MS.


Assuntos
Cromatografia Líquida , Metalotioneína/análise , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Lasers , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA